METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Thermal Simulation Study on Dendrite Growth of 24Mn Steel Continuous Casting Slab Under Different Secondary Cooling Water Ratio |
ZHANG Kailun1,*, PAN Dong1, GUO Qingtao1,2, ZHONG Honggang3, ZHANG Yu1, ZHANG Xiangyu1, XU Pei1
|
1 Ansteel Beijing Research Institute Co., Ltd., Beijing 102200, China 2 State Key Laboratory of Metal Materials for Marine Equipment and Application, Anshan 114009, Liaoning, China 3 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200444, China |
|
|
Abstract Based on the principle of numerical-physical coupling simulation, the solidification behavior of 24Mn steel under different secondary cooling water ratios was studied by using the continuous casting billet dendrite growth simulation device. The results show that with the increase of the secondary cooling water ratio, the surface and center temperatures of the slab decrease significantly, the surface temperature recovery phenomenon intensifies, the solidification rate of the slab increases, and the thickness of the solidified shell does not change significantly. Under the condition of 0.45 L/kg water ratio, the equiaxed crystal ratio of the center of the slab increases to 58.7%. While the segregation of the central elements of the slab is reduced under the condition of 0.73 L/kg water ratio, and the carbon segregation is 1.079. Through the mathematical model established, it is found that S and P are most likely to segregate on the dendritic front and form dendritic segregation during the solidification process of continuous casting billet, by increasing the cooling water ratio, the dendritic segregation can be increased to a certain extent, the macro segregation can be reduced, and the composition uniformity of the casting billet can be improved. In this work, the qualitative/quantitative relationship between continuous casting process and slab microstructure and segregation was effectively established, which provided theoretical gui-dance for high-quality continuous casting production of 24Mn steel.
|
Published: 10 March 2025
Online: 2025-03-18
|
|
|
|
1 Luo S, Zhu M Y. Iron and Steel, 2023, 58(9), 39 (in Chinese). 罗森, 朱苗勇. 钢铁, 2023, 58(9), 39. 2 Zhao P F, Guo X H, Song K X. Development and Application of Materials, 2008, 23(4), 85 (in Chinese). 赵培峰, 国秀花, 宋克兴. 材料开发与应用, 2008, 23(4), 85. 3 Zhou Y H, Wang X, Fang Y, et al. Modern Machinery, 2013(2), 67 (in Chinese). 周英豪, 王翔, 方颖, 等. 现代机械, 2013(2), 67. 4 Cui Y Y, Qin Y X. Hot Working Technology, 2021, 50(15), 51 (in Chinese). 崔艳雨, 秦永祥. 热加工工艺, 2021, 50(15), 51. 5 Shi J K, Yue F, Tian R L, et al. Special Steel, 2022, 43(2), 16 (in Chinese). 史建凯, 岳峰, 田儒良, 等. 特殊钢, 2022, 43(2), 16. 6 Lou J J, Bao Y P. Journal of University of Science and Technology Beijing, 2005(2), 173 (in Chinese). 娄娟娟, 包燕平. 北京科技大学学报, 2005(2), 173. 7 Chen X R, Zhao L, Yu H F, et al. Research and Exploration in Laboratory, 2023, 42(1), 208 (in Chinese). 陈湘茹, 赵龙, 余海峰, 等. 实验室研究与探索, 2023, 42(1), 208. 8 Sha M H, Li N, Song B, et al. Experimental Technology and Management, 2010, 27(2), 27 (in Chinese). 沙明红, 李娜, 宋波, 等. 实验技术与管理, 2010, 27(2), 27. 9 Li H. Establishment and experimental study of thermophysical simulation experimental system in continuous casting process. Master’s Thesis, Dalian University of Technology, China, 2003 (in Chinese). 李弘. 连铸过程热物理模拟实验体系的建立及实验研究. 硕士学位论文, 大连理工大学, 2003. 10 Wei J L, Wang Y H, Yu M X, et al. Special Steel, 2002, 23(3), 10 (in Chinese). 魏计林, 王宥宏, 虞明香, 等. 特殊钢, 2002, 23(3), 10. 11 Liu J, Zhou W J, Lu H, et al. Steelmaking, 2020, 36(4), 75 (in Chinese). 刘建, 周伟基, 路辉, 等. 炼钢, 2020, 36(4), 75. 12 Yuan P F, Li Z L. Shanxi Metallurgy, 2021, 44(6), 72 (in Chinese). 元鹏飞, 李忠利. 山西冶金, 2021, 44(6), 72. 13 Wang X, Fang Y, Zhang G C, et al. Continuous Casting, 2014(2), 11 (in Chinese). 王翔, 方颖, 张国成, 等. 连铸, 2014(2), 11. 14 Wang Y N. ISIJ International, 2019, 59(5), 872. 15 Zhu S L, Zheng G Q, Ye J S, et al. Iron and Steel, 2014, 49(8), 48 (in Chinese). 朱施利, 郑国渠, 叶健松, 等. 钢铁, 2014, 49(8), 48. 16 Yang Y B, Ji C, Luo S, et al. Iron and Steel, 2010, 45(9), 48 (in Chinese). 杨跃标, 祭程, 罗森, 等. 钢铁, 2010, 45(9), 48. 17 Thomas B G, Najjar F M. Applied Mathematical Modelling, 1991, 15(5), 226. 18 Dong H B, Lee P D. Acta Materialia, 2005, 53(3), 659. 19 Zhu X L, Pan D, Zhong H G, et al. Metallurgist, 2023, 67, 554. 20 Zhang K Q, Bai X J, Du D B. In:Asian Steel Congress 2000. Beijing, 2000, pp.288 (in Chinese). 张克强, 白学军, 杜得宝. 2000年亚洲钢铁大会. 北京, 2000, pp.288. 21 Bai L, Wang B, Zhong H G, et al. Metals, 2016, 6(3), 53. 22 Kobayashi Y, Dobara K, Todoroki H, et al. ISIJ International, 2020, 60(2), 276. 23 Huang Y W, Long M J, Liu P, et al. Metallurgical and Materials Tran-sactions B, 2017, 48, 2504. 24 Ferrandini P L, Rios C T, Dutra A T, et al. Materials Science and Engineering:A, 2006, 435, 139. 25 Farnin C J, Rickman J M, Dupont J N. Metallurgical and Materials Transactions A, 2021, 52, 5443. 26 Yoo H S. Transactions of the Korean Society of Mechanical, 1996, 20(7), 2367. 27 Mao M T, Guo H J, Wang F, et al. ISIJ International, 2019, 59(5), 848. 28 Onorato P I K, Hopper R W, Yinnon H, et al. Journal of Geophysical Research:Solid Earth, 1981, 86(B10), 9511. 29 Clyne T W, Kurz W. Metallurgical Transactions A, 1981, 12, 965. 30 El-bealy M, Thomas B G. Metallurgical and Materials Transactions B, 1996, 27, 689. 31 Meng Y, Thomas B G. Metallurgical and Materials Transactions B, 2003, 34, 685. |
|
|
|