INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
First Principles Calculation of Electronic Structure of Nb-doped Titanium Dioxide Nanotubes |
CHEN Aqing*, LIANG Qing
|
Center of Advanced Optoelectronic Materials and Devices, College of Materials and Environmental Engineering, HangzhouDianzi University, Hangzhou 310018, China |
|
|
Abstract TiO2 nanotubes are highly oriented and tightly packed,with large specific surface area and strong adsorption capacity,and have been widely used in photoelectric catalysis and other fields.In order to further modify TiO2 nanotubes,in this work,Nb-doped TiO2 nanotubes with different chirality were studied,and their band structures,state densities,and charge densities were calculated by the first-principles method based on DFT.It was revealed that the band structures of TiO2 nanotubes are different with chirality and that Nb doping elevates the Fermi level of TiO2 nanotubes,reducing the band gaps.The calculation results of state density showed that valence bands of intrinsic TiO2 nanotubes are mainly provided by O 2p orbits,and the conduction bands are mainly provided by Ti 4d orbits.After Nb doping,the 4d orbits of Nb will contribute to the conduction bands.According to the charge density cross-section diagram,it could be concluded that the interaction force between the Nb and O atoms are enhanced (compared with that between Ti and O),leading to the improvement in stability of TiO2 nanotubes.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Gu Y H. First principles study on the effect of the optical properties of TiO2 after double doping and gas molecule adsorption, Ph. D. thesis, Chongqing University, China, 2016 (in Chinese). 辜永红. 双掺杂及气体分子吸附对TiO2光学特性影响的第一性原理研究. 博士学位论文, 重庆大学, 2016. 2 Zhang Y, Li F, Zhang M. Journal of Jiaxing University, 2016, 28(6), 33. 张勇, 李凤, 张敏. 嘉兴学院学报, 2016, 28(6), 33. 3 Chen SS. Preparation and applications of titania nanotube array. Master’s Thesis, Shanghai Jiao Tong University, China, 2010 (in Chinese). 陈姗姗. 二氧化钛纳米管阵列的制备及应用研究. 硕士学位论文, 上海交通大学, 2010. 4 Zhang H Y. First principles study of anatase-phase TiO2 nanotubes. Master’s Thesis, Ocean University of China, China, 2013 (in Chinese). 张海洋. 锐钛矿型二氧化钛纳米管的第一性原理研究. 硕士学位论文, 中国海洋大学, 2013. 5 Xie Z, Chen W D. Acta Physica Sinica, 2014, 63(24), 75. 谢知, 程文旦. 物理学报, 2014, 63(24), 75. 6 Zhao C Q, Jin T, Tian J Z, et al. New Chemical Materials, 2021, 49(4), 242. 赵春琦, 荆涛, 田景芝, 等. 化工新型材料, 2021, 49(4), 242. 7 Liu W K, Luo J, Liu S. New Chemical Materials, 2023, 51(6), 45. 刘文凯, 罗洁, 刘慎. 化工新型材料, 2023, 51(6), 45. 8 Li H Y, Chen Y H, Zheng X L et al. Metallic Functional Materials, 2022, 29(5), 1. 李洪义, 陈言慧, 郑雄领, 等. 金属功能材料, 2022, 29(5), 1. 9 Cao DD. The design and photocatalytic performance of heterojunction micro-nano structure based on TiO2 nanotube arrays. Master’s Thesis, Ludong University, China, 2022 (in Chinese). 曹丹丹. TiO2纳米管阵列基异质结微纳结构的设计及光催化性能研究. 硕士学位论文, 鲁东大学, 2022. 10 Pan X. Study on the Adsorption and catalytic properties of TiO2 nanotube arrays. Master’s Thesis, Zhejiang University of Technology, China, 2013 (in Chinese). 潘西. 二氧化钛纳米管阵列吸附及催化性能研究. 硕士学位论文, 浙江工业大学, 2013. 11 Lu J Q. Liaoning Chemical Industry, 2021, 50(9), 1337. 卢建桥. 辽宁化工, 2021, 50(9), 1337. 12 Zhang X L, Wang J X, Xu S Q. Shang Dong Chemical Industry. 2022, 51(7), 33. 张小雷, 王江雪, 许士奇, 等. 山东化工, 2022, 51(7), 33. 13 Zhang H Z, Qin X Q, Wang M H. Environmental Protection of Chemical Industry. 2015, 35(3), 267. 张宏忠, 秦小青, 王明花. 化工环保, 2015, 35(3), 267. 14 Liu H Y. Preparation, modification, andphotocatalytic performance of titanium dioxides nanotubes. Master’s Thesis, Yanbian University, China, 2022 (in Chinese). 刘颢琰. 二氧化钛纳米管的制备、改性及其光催化性能研究. 硕士学位论文, 延边大学, 2022. 15 Ye SS. Visible-light photoelectrocatalytic removal of mixed waterpollutants based on titanium dioxide nanotubes composite film. Master’s Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese). 叶上诗. 基于二氧化钛纳米管复合膜可见光电催化去除混合污染物研究. 硕士学位论文, 华中科技大学, 2021. 16 Yu G D. Liaoning Chemical Industry, 2022, 51(5), 676. 于广铎. 辽宁化工, 2022, 51(5), 676. 17 Liu X, Liu Z Q, Zheng J, Yan X, et al. Journal of Alloys and Compounds, 2011, 509, 9970. 18 Su Y, Chen S, Quan X, Zhao H, et al. Applied Surface Science, 2008, 255, 2167. 19 Park J H, S Kim, Bard A J. Nano Letters, 2006, 6, 24. 20 Yang X, Min Y, Li S B, et al. Catalysis Science & Technology, 2018, 8, 1357. 21 Manole A V, Dobromir M, Gîrtan M, et al. Ceramics International, 2013, 39, 4771. 22 Ardeshir B, Omid A, Mohsen S. Journal of Nanostructures, 2020, 10, 119. 23 Momma K, Izumi F, Journal of Applied Crystallography, 2011, 44, 1272. 24 Giannozzi P, Baroni S, Bonini N, et al. Journal of Physics: Condensed Matter, 2009, 21, 395502. 25 M QQ. First-principles study of electonic properties of several metal oxides. Ph. D. thesis, University of Science and Technology of China, China, 2014 (in Chinese). 孟强强. 若干金属氧化物电子结构的第一性原理研究. 博士学位论文, 中国科学技术大学, 2014. 26 Li G, Chen M Q, Zhao S X, Acta Physico-Chimica Sinica, 2016, 32(12), 2905. 李刚, 陈敏强, 赵世雄, 等. 物理化学学报, 2016, 32(12), 2905. 27 Shen Y, Hu J Q, Pu Z H. et al. Precious Metals, 2021, 42(1), 65. 沈月, 胡洁琼, 普志辉, 等. 贵金属, 2021, 42(1), 65. 28 Chen J. Research onddlight conversion mechanism and afterglow characteristics of CsI:Tl. Master’s Thesis, University of Electronic Science and Technology of China, 2015 (in Chinese). 陈静. CsI:Tl光转换机理及余辉特性的研究. 硕士学位论文, 电子科技大学, 2015. 29 Wen D L, Xiong M Y, Zhang M, et al. Journal of Atomic and Molecular Physics, 2022, 39(4), 131. 文杜林, 熊明姚, 张苗, 等. 原子与分子物理学报, 2022, 39(4), 131. |
|
|
|