METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
First-principles Study on the Mechanical Properties and Bonding Characteristics of β,α″ and ω Phases in Ti-25at%Nb Alloy |
CHEN Huaihao1,2, LIU Haibo3, DENG Linhong4,*
|
1 School of Intelligent Manufacturing, Shazhou Professional Institute of Technology, Zhangjiagang 215600, Jiangsu, China 2 School of Materials Science & Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 3 School of Earth Science, Zhejiang University, Hangzhou 310058, China 4 School of Medical and Health Engineering, Changzhou University, Changzhou 213164, Jiangsu, China |
|
|
Abstract Based on the first-principles method, the elastic constants, density of states, charge density, and Mulliken population of three phase structures (β, α″ and ω phases) of Ti-25at%Nb alloy were calculated. On this basis, the mechanical properties, bonding characteristics and internal relations of Ti-25at%Nb alloy were explored. The results showed that the formation of α″ phase can inhibit the phase transformation of β→ω. The main bonding types of β, α″ and ω phases are metal bonds, followed by covalent bonds and ionic bonds. The strengths of metal bond and ionic bond in β phase are the highest, and the covalent bond strength of the α″ phase is the highest. The mechanical properties of the three phase structures mainly depend on the strength of the metal bond. The increase of metal bonds is beneficial to the decrease of the elastic modulus. A higher d-electron density of states per atom at Fermi level corresponds to a lower Young's modulus of the crystal structure. Metal bonds can improve ductility, inhibit brittleness, and lower the directional strength of bonds, thereby reducing the strength of the alloy phase. This study provides a theoretical basis for the preparation and mechanical properties analysis of β-type titanium alloys.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Wu X D, Yang G J, Ge Peng, et al. Titanium Industry Progress, 2008, 25(5), 6 (in Chinese). 吴晓东, 杨冠军, 葛鹏, 等. 钛工业进展, 2008, 25(5), 6. 2 Moffat D L, Larbalestier D C. Metallurgical and Materials Transactions A, 1988, 19, 1677. 3 Kim H Y, Ikehara Y, Kim J I, et al. Acta Materialia, 2006, 54, 2419. 4 Gutiérrez-Moreno, J J, Guo Y, Georgarakis K, et al. Journal of Alloys & Compounds, 2014, 615, S676. 5 Yao Q, Xing H, Guo W Y, et al. Rare Metal Materials & Engineering, 2009, 38(4), 4 (in Chinese). 姚强, 邢辉, 郭文渊, 等. 稀有金属材料与工程, 2009, 38(4), 4. 6 Xu Y F. Design, preparation and solid-solution aging behavior of a new β-type titanium alloy for biomedical applications. Ph. D. Thesis, Central South University, China, 2012 (in Chinese). 许艳飞. 新型医用β钛合金的设计、制备及其固溶时效行为. 博士学位论文, 中南大学, 2012. 7 Gutiérrez-Moreno J J, Bönisch M, Panagiotopoulos N T, et al. Journal of Alloys & Compounds, 2017, 696, 481. 8 Wu X W. Study on the microstructure control, thermal expansion and mechanical properties of metastable β-type Ti-Nb based alloys. Ph. D. Thesis, Southeast University, China, 2022 (in Chinese). 武祥为. 亚稳β型Ti-Nb基合金微观组织调控及其热膨胀和力学性能的研究. 博士学位论文, 东南大学, 2022. 9 Ikehata H, Nagasako N, Furuta T, et al. Physical Review B, 2004, 70(17), 174113. 10 Wan X, Wu C, Tan C, et al. Rare Metal Materials & Engineering, 2014, 43(3), 553. 11 Mo W. Titanium, Metallurgical Industry Press, China, 2008, pp. 281 (in Chinese). 莫畏. 钛, 冶金工业出版社, 2008, pp. 281. 12 Kim H Y, Hashimoto S, Kim J I, et al. Materials Transactions, 2004, 45(7), 2443. 13 Ma X Q, Han Y, Yu Z T, et al. Rare Metal Materials & Engineering, 2012, 41(9), 4 (in Chinese). 麻西群, 憨勇, 于振涛, 等. 稀有金属材料与工程, 2012, 41(9), 4. 14 Sten H, Mikkel S, Mohnish P, et al. 2D Materials, 2018, 5, 042002. 15 Nye F. Physical properties of crystals, Clarendon Press, UK, 1964, pp. 142. 16 Wu Z J, Zhao E J, Xiang H P, et al. Physical Review B, 2007, 76(5), 054115. 1. 17 Hill R W. Proceedings of the Physical Society, 1952, 65(5), 349. 18 Frantsevich I N, Voronov F F, Bokuta S A. Elastic constants and elastic moduli of metals and insulators handbook, Naukova Dumka Press, USSR, 1983, pp. 60. 19 Pugh S F. Philosophical Magazine, 1954, 45, 823. 20 Li L Y. Intermetallics, 2011, 19, 1275. 21 Tabor D. The hardness of metals, Oxford University Press, UK, 1951, pp. 105. 22 Hou F Q, Li S J, Hao Y L, et al. Scripta Materialia, 2010, 63, 54. 23 Lee C M, Ju C P, Chern Lin J H. Journal of Oral Rehabilitation, 2002, 29(4), 314. 24 Niu H, Niu S, Oganov A R. Journal of Applied Physics, 2019, 125(6), 065105. 25 Tong Y, Bai L, Liang X, et al. Intermetallics, 2020, 126, 106928. 26 Hao Y L, Niinomi M, Kuroda D, et al. Metallurgical & Materials Tran-sactions A, 2002, 33A, 3137. 27 Abdel-Hady M, Hinoshita K. Scripta Materialia, 2006, 55(5), 477. 28 Mu S, Wimmer S, Mankovsky S, et al. Scripta Materialia, 2019, 170, 189. 29 Morinaga M, Saito J I, Morishita M. Journal of Japan Institute of Light Metals, 1992, 42(11), 614. 30 Li Y, Gao Y, Xiao B, et al. Journal of Alloys & Compounds, 2010, 502, 28. 31 Mann J B, Meek T L, Knight E T, et al. Journal of the American Chemical Society, 2000, 122(21), 5132. 32 Xue J X, Zhang R G, Liu Y P, et al. Acta Physica Sinica, 2012, 61(12), 127101 (in Chinese). 薛金祥, 章日光, 刘燕萍, 等. 物理学报, 2012, 61(12), 127101. 33 Ojha A, Sehitoglu H. Shape Memory & Superelasticity, 2016, 2(2), 1. 34 Ge X N, Zhu D C, Feng Z M. 2011, 25(4), 369 (in Chinese). 葛向南, 朱达川, 冯作明. 材料研究学报, 2011, 25(4), 369. |
|
|
|