METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure Fabrication Path Planning for Glass Microprobe Electrodeposition |
XU Haili1,, YANG Yawen1,, XING Qiang1,*, CHEN Yan1, LIAO Xiaobo2, ZHANG Xiaoping1, ZHUANG Jian3
|
1 School of Mechanical Engineering, Nantong University, Nantong 226019, Jiangsu, China 2 Key Laboratory of Testing Technology for Manufacturing Process, Minsitry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China |
|
|
Abstract In order to achieve rapid and stable planar growth of meniscus confined electrodeposition (MCED) in a two-dimensional planar, an adaptive micro-jump partitioned deposition (AMJPD) method is proposed. This method utilizes scanning electrochemical cell microscopy (SECCM) to obtain the equations of the deposition plane, and combines it with the partitioned scanned deposition path from pre-deposited images to gene-rate a three-dimensional deposition path based on this plane. By introducing the proposed adaptive micro-jump deposition mode, obstacles encountered during planar growth deposition are effectively circumvented, enabling rapid and controllable planar manufacturing at the microscale. Experimental results show that the AMJPD method can be used for the deposition drawing of multiple line segments and planar patterns, achieving stable fabrication of micro lines with a width of 6 μm and an aspect ratio of 17∶1. Therefore, the AMJPD method proposed can be applied to the fabrication of various precision metal microstructures and micro-components, and should be widely used in the future in precision device fabrication, life medicine sensing and other related fields.
|
Published: 10 March 2025
Online: 2025-03-18
|
|
|
|
1 Hu J, Yu M F. Science, 2010, 329(5989), 313. 2 Liao X B, Zhuang J, Deng Y L, et al. Journal of Mechanical Engineering, 2021, 57(5), 148 (in Chinese). 廖晓波, 庄健, 邓亚楼, 等. 机械工程学报, 2021, 57(5), 148. 3 Ming P M, Li X C, Zhang X M, et al. Scientia Sinica Technologica, 2018, 48(4), 347 (in Chinese). 明平美, 李欣潮, 张新民, 等. 中国科学:技术科学, 2018, 48(4), 347. 4 Hu J. Interfacial physics in meniscus-confined electrodeposition and its applications for fabricating electronic structures. Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA, 2011. 5 Mckelvey K, O’connell M A, Unwin P R. Chemical Communications, 2013, 49(29), 2986. 6 Seol S K, Kim D, Lee S, et al. Small, 2015, 11(32), 3896. 7 Liao X, Zhuang J, Deng Y, et al. AIP Advances, 2020, 10(4), 045118. 8 Zhuang J, Liao X, Deng Y, et al. Micron, 2019, 126, 102738. 9 Liao X, Zhuang J, Yang J, et al. Advanced Engineering Materials, 2021, 4(4), 3502. 10 Wang Y, Xiong X, Ju B F, et al. International Journal of Machine Tools & Manufacture, DOI:10.1016/J.IJMACHTOOLS.2022.103850. 11 Yang J L. Study on stability control method of meniscus confined electrodeposition. Master’s Thesis, Southwest University of Science and Technology, China, 2022 (in Chinese). 杨九林. 微液滴限制电化学沉积稳定性控制方法研究. 硕士学位论文, 西南科技大学, 2022. 12 Hasan M, Zhao J, Jiang Z. Journal of Manufacturing Processes, 2017, 29, 343. 13 Macdonald E, Wicker R. Science, 2016, 353(6307), 1512. 14 Exner H, Horn M, Streek A, et al. Virtual & Physical Prototyping, 2008, 3(1), 3. 15 Vaezi M, Seitz H, Yang S. International Journal of Advanced Manufacturing Technology, 2013, 67(5-8), 1957. 16 Behroozfar A, Daryadel S, Morsali S R, et al. Advanced Materials, 2018, 30(4), 1705107. 17 Daryadel S, Behroozfar A, Minary-jolandan M. Advanced Engineering Materials, DOI:10.1002/adem.201800946. 18 Lei Y, Gao F, Guo J, et al. Integrated Ferroelectrics, 2018, 190(1), 164. 19 Williams C G, Edwards M A, Colley A L, et al. Analytical Chemistry, 2009, 81(7), 2486. 20 Neil E, Mathias S, Alexander W C, et al. Analytical Chemistry, 2010, 82(22), 9141. 21 Tao B, Unwin P R, Bentley C L. The Journal of Physical Chemistry C, 2020, 124(1), 789. 22 Takahashi Y, Kumatani A, Munakata H, et al. Nature Communications, 2014, 5(1), 5450. 23 Patel A N, Mckelvey K, Unwin P R. Journal of the American Chemical Society, 2012, 134(50), 20246. 24 Zhang P, Aydemir N, Alkaisi M M, et al. ACS Applied Materials & Interfaces, 2018, 10(14), 11888. 25 Guo R F, Zhuang J, Yu D H. Journal of Xi’an Jiaotong University, 2016(7), 83 (in Chinese). 郭仁飞, 庄健, 于德弘. 西安交通大学学报, 2016(7), 83. 26 Li Y X. Research on optimization algorithm of fused deposition 3D printing slice. Master’s Thesis, Harbin University of Science and Technology, China, 2021 (in Chinese). 李云旭. 熔融沉积式3D打印切片优化算法研究. 硕士学位论文, 哈尔滨理工大学, 2021. 27 Han J, Wang D P, Xia L. Journal of Hefei University of Technology (Natural Science), 2020, 43(1), 1 (in Chinese). 韩江, 王德鹏, 夏链, 等. 合肥工业大学学报(自然科学版), 2020, 43(1), 1. 28 Thompson B, Yoon H S. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(9), 1555. 29 Liu A H. The study of the software for screwthread processing on general nc lathe and interpolation algorithm based on PC. Master’s Thesis, Guangxi University, China, 2003 (in Chinese). 刘爱华. 基于PC机的普通数控车床螺纹加工软件及插补算法的研究. 硕士学位论文, 广西大学, 2003. 30 Liu R. Terrain travelers ability analysis of quadruped robot based on terrain features and leader teaching and learning. Master’s Thesis, Shandong University, China, 2018 (in Chinese). 刘蕊. 基于地形特征与领航员示教学习的四足机器人地形可通过性分析. 硕士学位论文, 山东大学, 2018. 31 Zhou S, Kang F, Li W, et al. International Journal of Agricultural and Biological Engineering, 2020, 13(1), 198. 32 Li W J, Mang D G, Tang H J, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2017(5), 4 (in Chinese). 李嘉维, 马殿光, 唐厚君, 等. 组合机床与自动化加工技术, 2017(5), 4. 33 Zhang X, Yuan L, Lei Y, et al. Applied Materials Today, 2021, 24, 101138. 34 Liao X B, Zhuang J, Cheng L, et al. Optics and Precision Engineering, 2021, 29(10), 2432 (in Chinese). 廖晓波, 庄健, 程磊, 等. 光学精密工程, 2021, 29(10), 2432. |
|
|
|