METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Welding Wire Composition on Microstructure Inhomogeneity of Domestic Invar Alloy GTAW Joint |
CHENG Lihong1, ZHOU Yuqi1, WANG Jianfeng1, LI Zhu2, MU Zhan2, ZHAN Xiaohong1,*
|
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2 Xi'an Gangyan Special Alloy Co., Ltd., Xi'an 710000, China |
|
|
Abstract The influence of wire composition on the microstructure varieties of joints was studied by using gas tungsten arc welding (GTAW) process. Results showed that the microstructure of welded joint obtained by using the three welding wires are featured coarse columnar crystals grown perpendicular to the fusion lines and equiaxed crystals in the middle of weld, cellular subcrystals in equiaxed crystals are remarkably refined.There was a large differences in the type, morphology and distribution position of precipitated phases formed when using welding wires of different composition.When using the welding wire with 0.40%Ti, more regular bulk particles were precipitated at the grain boundary, and if useing the welding wire with 1.42%Nb, a white chain or columnar continuous phase were precipitated at the subgrain boundary, which not only enabled the core of heterogeneous nucleation or the particle that nails the grain boundary to refine the grain, but also hindered dislocation motion to strengthen the welded joint.The tensile test results showed that the tensile strength of the joints with 0.40%Ti addtion or 1.42%Nb addtion to the welding wire reached 638.2MPa or 653.5 MPa respectively, which are 60.6% and 64.4% higher than that of conventional welding wire.When the specimen was welded with the welding wire that with Nb (1.42%Nb) addition, the size depth of the fracture ligament increased, and the joint fracture mode changed from brittle fracture to ductile fracture, indicating that Nb plays a significant role in the microstructure refinement and mechanical properties improvement of Invar alloy joints.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:Special Fund for Basic Scientific Research of the Central Universities (NF2022003). |
|
|
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese). 杜善义. 复合材料学报, 2007, 24(1), 1. 2 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61 (in Chinese). 孙振起, 吴安如. 材料导报, 2015, 29(11), 61. 3 Fang Y W, Wang X F, Sun C, et al. Composites Science and Engineering, 2014, 2, 69 (in Chinese). 方宜武, 王显峰, 孙成, 等. 玻璃钢/复合材料, 2014, 2, 69. 4 Wang Y H, Chen J, Zhan X H, et al. Aeronautical Manufacturing Technology, 2014(11), 93. 王玉华, 陈洁, 占小红, 等. 航空制造技术, 2014, (11), 93. 5 Yao H L, Zhu M L, Tan S Y. Science & Technology Review, 2023, 41(6), 21 (in Chinese). 姚海琳, 朱美玲, 谭舒耀. 科技导报, 2023, 41(6), 21. 6 Chen J, Zhan X H, Chen J C, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(5), 1010 (in Chinese). 陈洁, 占小红, 陈纪城, 等. 中国有色金属学报, 2016, 26(5), 1010. 7 Zhao Y, Wu A P, Yutaka S, et al. Transactions of the China Welding Institution, 2011, 32(12), 89 (in Chinese). 赵玥, 吴爱萍, Yutaka S, 等. 焊接学报, 2011, 32(12), 89. 8 Zhan X H, Zhang D, Wei Y H, et al. Optics & Laser Technology, 2017, 97, 124. 9 Wang X J, Chai T X, Zhao Q S, et al. Transactions of the China Welding Institution, 2014, 35(4), 19 (in Chinese). 王希靖, 柴廷玺, 赵青山, 等. 焊接学报, 2014, 35(4), 19. 10 Zhao M J, Guo Z F, Chen S H, et al. Journal of Materials Science & Technology, 2014, 30(11), 1155. 11 Zhan X H, Liu X B, Wei Y H, et al. Journal of Materials Processing Technology. 2017, 244, 97. 12 Zhang C, Yu S F, Shu R T, et al. Modern Manufacturing Engineering, 2022(5), 79 (in Chinese). 张超, 余圣甫, 束润涛, 等. 现代制造工程, 2022(5), 79. 13 Zhao J Y, Wang J Y, Kang X F, et al. Optics and Laser Technology, 2023, 158, 108831. 14 Jiao G H, Fang X W, Chen X M, et al. Journal of Materials Processing Technology, 2023, 317, 117994. 15 Chen X L, Li W S, Lou M, et al. Journal of Materials Engineering, 2022, 50(9), 32 (in Chinese). 陈小龙, 李文生, 娄明, 等. 材料工程, 2022, 50(9), 32. 16 Ren H, Liu F C, Lin X, et al. Rare Metal Materials and Engineering, 2019, 48(10), 3289 (in Chinese). 任航, 刘奋成, 林鑫, 等. 稀有金属材料与工程, 2019, 48(10), 3289. 17 Wang S Y, Liu S W, Hou X Y, et al. Transactions of the China Welding Institution, 2023, 44(3), 31 (in Chinese). 王诗洋, 刘士伟, 侯星宇, 等. 焊接学报, 2023, 44(3), 31. 18 Meng S H, Li L Q, Si C J, et al. Crystals, 2022, 12, 977. 19 Gao Y, Yu Z H, Yan Y W, et al. Journal of Materials Engineering, 2023, 51(2), 91 (in Chinese). 高炜, 余竹焕, 阎亚雯, 等. 材料工程, 2023, 51(2), 91. 20 Chen D, Liu T, Zhao Y Q, et al. Chinese Journal of Lasers, 2021, 48(10), 202 (in Chinese). 陈丹, 刘婷, 赵艳秋, 等. 中国激光, 2021, 48(10), 202. 21 Wang C S, Wang T T, Tan M L, et al. Journal of Materials Science & Technology, 2015, 31(2), 135. 22 Gilles R, Mukherji D, Eckerlebe H, et al. Journal of Alloys and Compounds, 2014, 612, 90. 23 Sun Z H, Sun D Z, Liu J, etal. Transactions of Materials and Heat Treatment, 2017, 38(4), 87 (in Chinese). 孙中华, 孙道柱, 刘洁, 等. 材料热处理学报, 2017, 38(4), 87. 24 Yang X H, Chen W Q, Hao Z Q. Journal of Materials Engineering, 2010(9), 7 (in Chinese). 杨晓华, 陈伟庆, 郝占全. 材料工程, 2010(9), 7. 25 Xing Z Q, Pang J Y, Zhang H W, et al. Journal of Alloys and Compounds, 2023, 943, 169149. 26 Yuan J P. Effect of deformation and heat treatment on the microstructure and properties of Invar alloy. Master's Thesis, Central South University, China, 2005 (in Chinese). 袁均平. 变形及热处理对因瓦合金组织与性能的影响. 硕士学位论文, 中南大学, 2005. 27 Du K, Zhang Y, Zhang Z W, et al. Materials Science and Engineering, A, 2022, 855, 143848. 28 Hu H L, Zhao M J, Rong L J. Journal of Materials Science & Technology, 2020, 47(12), 152. 29 Yang T, Zhao Y L, Fan L, et al. Acta Materialia, 2020, 189, 47. 30 Yang X H, Chen W Q, Yuan S Q. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2009, 41(1), 136 (in Chinese). 杨晓华, 陈伟庆, 袁守谦. 西安建筑科技大学学报(自然科学版), 2009, 41(1), 136. 31 Cai K H, Ding S S, Zhang X Y. Journal of Functional Materials, 2004, 35, 1764 (in Chinese). 蔡凯洪, 丁绍松, 张晓义. 功能材料, 2004, 35(增刊1), 1764. 32 Wang X, Zhang J F, Zhang Y H, et al. Chinese Journal of Rare Metals, 2009, 33(5), 670 (in Chinese). 王鑫, 张建福, 张羊换 等. 稀有金属, 2009, 33(5), 670. 33 Ma B J. Research on composition design of welding wire, microstructure and properties of welds for low expansion Invar alloy, Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese). 马宝军. 低膨胀因瓦合金焊丝成分体系设计及熔敷金属组织性能研究. 硕士学位论文, 河北工业大学, 2018. 34 Visconti P, Jones K M, Reshchikov M A, et al. Applied Physics Letters, 2000, 77(22), 3532. 35 Muto D, Araki T, Naoi H, et al. Physica Status Solidi, 2005, 202(5), 773. |
|
|
|