ELECTROCHEMICAL ENERGY MATERIALS AND DEVICES |
|
|
|
|
|
Research Progress of Ionomers for Anion Exchange Membrane Water Electrolysis |
ZHAO Cenkai1, ZOU Jiexin2, WANG Min1,*, LI Siming3, ZHAO Wei1, ZHANG Shilin1, TENG Juejin1, WANG Yanjiao1, WU Mingbo1, HU Han1,*, LI Yawei3,4,*
|
1 State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China 2 Qingdao Haier Smart Technology R&D Co., Ltd., Qingdao 266101, Shandong, China 3 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China 4 Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan 030006, China |
|
|
Abstract Nowadays, as the energy scarce increasing, hydrogen energy has emerged as a renewable and environmental-friendly new energy source. It serves as an important energy carrier for global energy conservation and carbon reduction. Traditional alkaline water electrolysis (AWE) is the most common method for hydrogen production, but it requires alkaline solution with high pH as the electrolyte and can only operate at low current density; proton exchange membrane water electrolysis (PEMWE) technology, on the other hand, can be operated at high current density with high efficiency, making it the most promising water electrolysis technology for hydrogen production. However, the expensive catalyst and need for acid-resistant components are important challenges that hinder its development. Anion exchange membrane water electrolysis (AEMWE) is a promising new technology for green and cost-effective hydrogen production. Comparing with AWE, it avoids the circulation of concentrated alkaline solution. Comparing with PEMWE, it offers advantages such as lower cost and lower corrosiveness. Ionomers, as a key component of the triple phase boundary (TPB) in the membrane electrode assembly (MEA), play a crucial role in the catalytic capabilities and water management of AEMWE. This review firstly aims to provide an overview of AEMWE technology and the importance of ionomer in MEA. It also summarizes the structures and characteristics of representative ionomers adopted in AEMWE. Finally, this review explores strategies to improve the electrolytic performance of AEMWE through ionomer regulations from three aspects: structural regulation, content regulation and additive re-gulation.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:National Natural Science Foundation of China (22208376), Qingdao New Energy Shandong Laboratory Open Project (QNESL OP 202303), Shandong Provincial Natural Science Foundation (ZR2023LFG005), Shandong Postdoctoral Science Foundation (SDBX202302037), Shanxi Province Overseas Students Science and Technology Activities Preferential Funding Project (20230002). |
|
|
1 Dillman K J, Heinonen J. Renewable and Sustainable Energy Reviews, 2022, 167, 112648. 2 Turner J M. Science, 2022, 376(6600), 1361. 3 van der Spek M, Banet C, Bauer C, et al. Energy & Environmental Science, 2022, 15(3), 1034. 4 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 44(8), 2060. 5 Hao A, Wan X, Liu X, et al. Nano Research Energy, 2022, 1, e9120013. 6 Liu Z. Energy Sources Part B: Economics, Planning, and Policy, 2018, 13(2), 132. 7 Wang Y, Wang M, Yang Y, et al. Chem Catalysis, 2023, 3(7), 100643. 8 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(16), 164514. 9 Li D, Park E J, Zhu W, et al. Nature Energy, 2020, 5(5), 378. 10 Zhang K, Liang X, Wang L, et al. Nano Research Energy, 2022, 1, e9120032. 11 Adhikari S, Pagels M K, Jeon J Y, et al. Polymer, 2020, 211, 123080. 12 Buttler A, Spliethoff H. Renewable and Sustainable Energy Reviews, 2018, 82, 2440. 13 Schmidt O, Gambhir A, Staffell I, et al. International Journal of Hydrogen Energy, 2017, 42(52), 30470. 14 Naughton M S, Brushett F R, Kenis P J A. Journal of Power Sources, 2011, 196(4), 1762. 15 Zou J, Huang H, Zaman S, et al. Chemical Engineering Journal, 2023, 457, 141113. 16 Bernt M, Gasteiger H A. Journal of the Electrochemical Society, 2016, 163(11), F3179. 17 Kang Z, Wang M, Yang Y, et al. International Journal of Hydrogen Energy, 2022, 47(9), 5807. 18 Zhao S, Wang Y, Dong J, et al. Nature Energy, 2016, 1(12), 16184. 19 Suntivich J, May K J, Gasteiger H A, et al. Science, 2011, 334(6061), 1383. 20 Niether C, Faure S, Bordet A, et al. Nature Energy, 2018, 3(6), 476. 21 Chen N, Paek S Y, Lee J Y, et al. Energy & Environmental Science, 2021, 14(12), 6338. 22 Chen P, Hu X. Advanced Energy Materials, 2020, 10(39), 2002285. 23 Huang C, Zhou Q, Yu L, et al. Advanced Energy Materials, 2023, 13(32), 2301475. 24 Razmjooei F, Morawietz T, Taghizadeh E, et al. Joule, 2021, 5(7), 1776. 25 Xu Q, Zhang L, Zhang J, et al. EnergyChem, 2022, 4(5), 100087. 26 Ahlfield J, Huang G, Liu L, et al. Journal of the Electrochemical Society, 2017, 164(14), F1648. 27 Faid A Y, Xie L, Barnett A O, et al. International Journal of Hydrogen Energy, 2020, 45(53), 28272. 28 Jervis R, Mansor N, Sobrido A J, et al. Journal of the Electrochemical Society, 2017, 164(14), F1551. 29 Fang S, Liu G, Li M, et al. ACS Applied Energy Materials, 2023, 6(6), 3590. 30 Lenser C, Patt M, Menzel S, et al. Advanced Functional Materials, 2014, 24(28), 4466. 31 Kim O H, Oh S H, Ahn C Y, et al. Fuel Cells, 2018, 18(6), 711. 32 Zhao J, Zou X, Pan J, et al. Chemical Engineering Journal, 2023, 452, 139498. 33 Lin N, Zausch J. Chemical Engineering Science, 2022, 253, 117600. 34 Yang H, Driess M, Menezes P W. Advanced Energy Materials, 2021, 11(39), 2102074. 35 Wan L, Liu J, Xu Z, et al. Small, 2022, 18(21), 2200380. 36 Peckham T J, Holdcroft S. Advanced Materials, 2010, 22(42), 4667. 37 Huang J, Yu Z, Tang J, et al. International Journal of Hydrogen Energy, 2022, 47(65), 27800. 38 Weber A Z, Kusoglu A. Journal of Materials Chemistry A, 2014, 2(41), 17207. 39 Li D, Matanovic I, Lee A S, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 9696. 40 Varcoe J R, Atanassov P, Dekel D R, et al. Energy & Environmental Science, 2014, 7(10), 3135. 41 Kim D S, Labouriau A, Guiver M D, et al. Chemistry of Materials, 2011, 23(17), 3795. 42 Noonan K J T, Hugar K M, Kostalik H A I V, et al. Journal of the Ame-rican Chemical Society, 2012, 134(44), 18161. 43 Zha Y, Disabb-Miller M L, Johnson Z D, et al. Journal of the American Chemical Society, 2012, 134(10), 4493. 44 Park E J, Kim Y S. Journal of Materials Chemistry A, 2018, 6(32), 15456. 45 Pan J, Lu S, Li Y, et al. Advanced Functional Materials, 2010, 20(2), 312. 46 Mohanty A D, Tignor S E, Krause J A, et al. Macromolecules, 2016, 49(9), 3361. 47 Liu L, Chu X, Liao J, et al. Energy & Environmental Science, 2018, 11(2), 435. 48 Pan J, Li Y, Han J, et al. Energy & Environmental Science, 2013, 6(10), 2912. 49 Kaczur J J, Yang H, Liu Z, et al. Frontiers in Chemistry, 2018, 6, 263. 50 Xue J, Zhang J, Liu X, et al. Electrochemical Energy Reviews, 2022, 5(2), 348. 51 Marino M G, Kreuer K D. ChemSusChem, 2015, 8(3), 513. 52 You W, Noonan K J T, Coates G W. Progress in Polymer Science, 2020, 100, 101177. 53 Wang J, Zhao Y, Setzler B P, et al. Nature Energy, 2019, 4(5), 392. 54 Gottesfeld S, Dekel D R, Page M, et al. Journal of Power Sources, 2018, 375, 170. 55 Leonard D P, Lehmann M, Klein J M, et al. Advanced Energy Materials, 2023, 13(3), 2203488. 56 Guo M, Ban T, Wang Y, et al. Journal of Membrane Science, 2022, 647, 120299. 57 Zhang C, Guo Z, Tian Y, et al. Nano Research Energy, 2023, 2, e9120063. 58 Yang Y, Li P, Zheng X, et al. Chemical Society Reviews, 2022, 51(23), 9620. 59 Matanovic I, Maurya S, Park E J, et al. Chemistry of Materials, 2019, 31(11), 4195. 60 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2021, 168(2), 024503. 61 Olsson J S, Pham T H, Jannasch P. Advanced Functional Materials, 2018, 28(2), 1702758. 62 Zhang J, Zhang K, Liang X, et al. Journal of Materials Chemistry A, 2021, 9(1), 327. 63 Liu X, Wu D, Liu X, et al. Electrochimica Acta, 2020, 336, 135757. 64 Guo M, Ban T, Wang Y, et al. Journal of Colloid and Interface Science, 2023, 638, 349. 65 Buggy N C, Wu I, Du Y, et al. Electrochimica Acta, 2022, 412, 140124. 66 Ott S, Orfanidi A, Schmies H, et al. Nature Materials, 2020, 19(1), 77. 67 Kim C, Bui J C, Luo X, et al. Nature Energy, 2021, 6(11), 1026. 68 Lim A, Kim H J, Henkensmeier D, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 410. 69 Chen N, Lee Y M. Progress in Polymer Science, 2021, 113, 101345. 70 Koch S, Heizmann P A, Kilian S K, et al. Journal of Materials Chemistry A, 2021, 9(28), 15744. 71 Cossar E, Murphy F, Walia J, et al. ACS Applied Energy Materials, 2022, 5(8), 9938. 72 Plevová M, Hnát J, Žitka J, et al. Journal of Power Sources, 2022, 539, 231476. 73 Yassin K, Rasin I G, Brandon S, et al. Journal of Power Sources, 2022, 524, 231083. 74 Wang M, Park J H, Kabir S, et al. ACS Applied Energy Materials, 2019, 2(9), 6417. 75 Mauger S A, Wang M, Cetinbas F C, et al. Journal of Power Sources, 2021, 506, 230039. 76 Mauger S A, Pfeilsticker J R, Wang M, et al. Journal of Power Sources, 2020, 450, 227581. 77 Jiang Z, Yi G, Yao X, et al. Chemical Engineering Journal, 2023, 467, 143442. 78 Alia S M, Pivovar B S. Journal of the Electrochemical Society, 2018, 165(7), F441. 79 Vincent I, Kruger A, Bessarabov D. International Journal of Hydrogen Energy, 2017, 42(16), 10752. 80 Mandal M, Huang G, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(5), 054501. 81 Omasta T J, Wang L, Peng X, et al. Journal of Power Sources, 2018, 375, 205. 82 Omasta T J, Park A M, LaManna J M, et al. Energy & Environmental Science, 2018, 11(3), 551. 83 Dekel D R. Journal of Power Sources, 2018, 375, 158. 84 Dekel D R, Rasin I G, Page M, et al. Journal of Power Sources, 2018, 375, 191. 85 Yang D, Yu H, Li G, et al. Journal of Power Sources, 2014, 267, 39. 86 Lees E W, Mowbray B A W, Parlane F G L, et al. Nature Reviews Materials, 2022, 7(1), 55. |
|
|
|