POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Application of Stimuli-responsive Aggregation in Nanoparticles |
HU Si, LI Mengyao, XU Feihong, ZHANG Min, WU Qiong, ZHANG Dongdong*
|
Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China |
|
|
Abstract In the past research on the application of nanoparticles, more attention has been paid to the uniform dispersion of nanoparticles in the suspension to realize the small and uniform particle size, which has a good effect in the fields of detection, medical treatment and so on. In recent years, the stimuli-responsive aggregation of nanoparticles has gradually become a hot spot. It can realize the transformation of nanoparticles from dispersion to aggregation under specific conditions, realize color development application in detection and targete treatment application in medical treatment. There are some studies could realize the redispersion and resuspension of aggregated nanoparticles, so as to realize the repeated application of nanoparticles. Meanwhile, in the field of intelligent self-assembly of nanoparticles (smart materials), more and more studies focus on the stimuli-responsive aggregation (self-assembly) of nanoparticles, too. In this paper, the methods, applications and effects of aggregation of nanoparticles are reviewed, which under the conditions of pH, temperature, light, magnetic field and compound stimulation. Meanwhile, the principles of these stimuli-responsive aggregations are revealed, the application of stimulus responsive nanoparticles are also briefly introduced, and their future development prospects are prospected.
|
Published: 30 August 2023
Online: 2023-09-06
|
|
Fund:National Natural Science Foundation of China (32001745), Young Elite Scientists Sponsorship Program by CAST (2019QNRC001), Joint Funds of Science & Technology Research and Development Program of Henan (222103810081). |
|
|
1 Raha S, Ahmaruzzaman M. Nanoscale Advances, 2022, 4(8), 1868. 2 Mat'átková O, Michailidu J, Miškovská A, et al. Biotechnology Advances, 2022, 58, 107905. 3 Chen X, Song L, Li X, et al. Chemical Engineering Journal, 2020, 389, 124416. 4 Hatai J, Hirschháuser C, Niemeyer J, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2107. 5 Liu M, Yang M, Wan X, et al. Advanced Materials, DOI:10. 1002/adma. 202208995, 2208995. 6 Tudu B K, Gupta V, Kumar A, et al. Journal of Colloid And Interface Science, 2020, 566, 183. 7 Johnson L, Gray D M, Niezabitowska E, et al. Nanoscale, 2021, 13(17), 7879. 8 Rasheed T, Adeel M, Nabeel F, et al. Science of the Total Environment, 2019, 688, 299. 9 Song L, Zhao B, Ju X, et al. Materials Science in Semiconductor Proces-sing, 2020, 111, 104986. 10 Tummino M L, Testa M L, Malandrino M, et al. Nanomaterials, 2019, 9, 162. 11 Li L, Yang W W, Xu D G. Journal of Drug Targeting, 2019, 27(4), 423. 12 Zhang D D, Liu J M, Liu Y Y, et al. Progress in Chemistry, 2018, 30(12), 1908 (in Chinese). 张咚咚, 刘敬民, 刘瑶瑶, 等. 化学进展, 2018, 30(12), 1908. 13 Grzelczak M, Liz-Marzán L M, Klajn R. Chemical Society Reviews, 2019, 48(5), 1342. 14 Ghorbani M, Hamishehkar H. Materials Science and Engineering:C, 2018, 92, 599. 15 Shah A, Malik M S, Khan G S, et al. Chemical Engineering Journal, 2018, 353, 559. 16 Deirram N, Kermaniyan S S, Johnston A P R, et al. Australian Journal of Chemistry, 2021, 74(7), 514. 17 Engel S, Möller N, Stricker L, et al. Small, 2018, 14(16), 1704287. 18 Astray G, Mejuto J C, Simal-Gandara J. Food Hydrocolloids, 2020, 106, 105882. 19 Huang H, Wang J, Xu Y, et al. Applied Catalysis A:General, 2020, 594, 117463. 20 Sharifi M, Hosseinali S H, Yousefvand P, et al. Materials Science and Engineering:C, 2020, 108, 110422. 21 Morita-Imura C, Zama K, Imura Y, et al. Langmuir, 2016, 32(27), 6948. 22 Domenici F, Guazzelli E, Masotti E, et al. Macromolecular Chemistry and Physics, 2021, 222(5), 2000447. 23 Bardajee G R, Khamooshi N, Nasri S, et al. International Journal of Biological Macromolecules, 2020, 153, 180. 24 Yan J, Li M, Wang Z, et al. Chemical Engineering Journal, 2020, 389, 123468. 25 Ohnsorg M L, Ting J M, Jones S D, et al. Polymer Chemistry, 2019, 10(25), 3469. 26 Cai Z X, Zhang B, Jiang L Y, et al. Progress in Chemistry, 2019, 31(12), 1653 (in Chinese). 蔡紫煊, 张斌, 姜丽阳, 等. 化学进展, 2019, 31(12), 1653. 27 Hogan K J, Mikos A G. Polymer, 2020, 211, 123063. 28 Fernández-Quiroz D, Loya-Duarte J, Silva-Campa E, et al. Journal of Applied Polymer Science, 2019, 136(32), 47831. 29 Pham S H, Choi Y, Choi J. Pharmaceutics, 2020, 12(7), 630. 30 Abdollahi A, Roghani-Mamaqani H, Razavi B, et al. Polymer Chemistry, 2019, 10(42), 5686. 31 Wang Z Y, Zhang H, Yang Y, et al. Drug Delivery, 2016, 23(4), 1222. 32 Chen S, Sun B, Miao H, et al. ACS Materials Letters, 2020, 2(2), 174. 33 Wang J, Peled T S, Klajn R. Journal of the American Chemical Society, 2023, 145(7), 4098. 34 Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Langmuir, 2018, 34(46), 13910. 35 Pang J, Gao Z, Tan H, et al. Frontiers in Chemistry, 2019, 7, 620. 36 Raimondo C, Reinders F, Soydaner U, et al. Chemical Communications, 2010, 46(7), 1147. 37 Zhang Y, Ng M, Hong E Y H, et al. Journal of Materials Chemistry C, 2020, 8(39), 13676. 38 Ke K, Du Z, Chang X, et al. Colloid and Polymer Science, 2017, 295(10), 1851. 39 Rapp T L, Deforest C A. Advanced Drug Delivery Reviews, 2021, 171, 94. 40 Li F, Li T, Cao W, et al. Biomaterials, 2017, 133, 208. 41 Wang X, Liu X, Xiao C, et al. Microporous and Mesoporous Materials, 2020, 297, 110041. 42 Zhang D D, Liu J M, Sun S M, et al. Journal of Agricultural and Food Chemistry, 2019, 67(24), 6874. 43 Liu J M, Zhang D D, Fang G Z, et al. Biomaterials, 2018, 165, 39. 44 Nasiri S S, Salami-Kalajahi M, Roghani-Mamaqani H, et al. Inorganica Chimica Acta, 2018, 476, 83. 45 Resende G, Dutra G V S, Neta M S B, et al. Polymers, 2020, 12(12), 2868. 46 Ma Z, Zhao D, Chang Y, et al. Dalton Transactions, 2013, 42(39), 14261. 47 Sarmphim P, Jantaratana P, Sirisathitkul C. Journal of Nanomaterials, 2018, 2018, 3248051. 48 Liu B W, Zhou H, Zhou S T, et al. Macromolecules, 2014, 47(9), 2938. 49 Chen S, Guo C X, Zhao Q, et al. Chemistry—A European Journal, 2014, 20(43), 14057. 50 Yong H W, Kakkar A. Polymer International, 2022, 71(5), 514. 51 Fan W, Tong X, Farnia F, et al. Chemistry of Materials, 2017, 29(13), 5693. 52 Guo X, Song T, Chen D, et al. ACS Applied Materials & Interfaces, 2023, 15(2), 3543. 53 Nezhadghaffar-Borhani E, Abdollahi A, Roghani-Mamaqani H, et al. Journal of Colloid and Interface Science, 2021, 593, 67. 54 Wang Y, Feng L, Zhu H, et al. ACS Applied Nano Materials, 2021, 4(4), 3780. 55 Liu D, Chen W, Sun K, et al. Angewandte Chemie International Edition, 2011, 50(18), 4103. 56 Yuan X Q, Zhang Y Q, Li Z Y, et al. Chinese Journal of Chemistry, 2021, 39(3), 729. 57 Guan X, Yan S, Hou D, et al. Chemical Physics Letters, 2019, 714, 11. 58 Yang Z, Fu K, Yu J, et al. Polymers for Advanced Technologies, 2018, 29(8), 2273. 59 Jing X, Zhi Z, Jin L, et al. Nanoscale, 2019, 11(19), 9457. 60 Wang J, Wu B, Li S, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(15), 2450. 61 Qi A, Deng L, Liu X, et al. Journal of Biomedical Nanotechnology, 2017, 13(11), 1386. 62 Wang Y, Yan J, Wen N, et al. Biomaterials, 2020, 230, 119619. 63 Wells C M, Harris M, Choi L, et al. Journal of Functional Biomaterials, 2019, 10(3), 34. 64 Raza A, Rasheed T, Nabeel F, et al. Molecules, 2019, 24(6), 1117. 65 Yang Z, Song J, Tang W, et al. Theranostics, 2019, 9(2), 526. 66 Town A R, Giardiello M, Gurjar R, et al. Nanoscale, 2017, 9(19), 6302. 67 Lei L, Xie D, Song B, et al. Langmuir, 2017, 33(32), 7908. 68 Li Y, Zhu L, Wang B, et al. ACS Applied Materials & Interfaces, 2018, 10(33), 27831. 69 Chakraborty S, Kitchens C L. The Journal of Physical Chemistry C, 2019, 123(43), 26450. 70 Li Y, Hu J, Niu C, et al. Nanotechnology, 2018, 29(22), 225501. 71 Mazuel F, Mathieu S, Di Corato R, et al. Small, 2017, 13(31), 1701274. 72 Town A, Niezabitowska E, Kavanagh J, et al. The Journal of Physical Chemistry B, 2019, 123(29), 6303. 73 Mohsen R, Vine G J, Majcen N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 428, 53. 74 Cheng C A, Deng T, Lin F C, et al. Theranostics, 2019, 9(11), 3341. 75 Krause S, Bon V, Stoeck U, et al. Angewandte Chemie International Edition, 2017, 56(36), 10676. 76 Paulus A S, Heinzler R, Ooi H W, et al. ACS Applied Materials & Interfaces, 2015, 7(26), 14279. |
|
|
|