ELECTROCHEMICAL ENERGY MATERIALS AND DEVICES |
|
|
|
|
|
Performance Research of CO2 Electrolysis of Mn Doped Pr0.5Ba0.5Fe0.9Mn0.1O3-δ Perovskite as SOEC Cathode |
TANG Jiangcheng1, ZHAO Xianxing2,*, CAI Runtian2, YANG Chenghao1, CHI Bo1
|
1 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 Xin’ao Natural Gas Co., Ltd., Langfang 065000, Hebei, China |
|
|
Abstract Cathode is the site where the CO2 reduction reaction occurs in solid oxide electrolysis cell (SOEC) for CO2 electrolysis, and it is also the key component for SOEC to achieve high performance. The electrochemical performance of Pr0.5Ba0.5Fe0.9Mn0.1O3-δ (PBFM) perovskite as SOEC cathode catalyst to convert CO2 to CO was studied. The result shows that the cell based on PBFM cathode shows a higher current density of 1.7 A·cm-2 at applied 1.8 V voltage and 850 ℃. There is an approximately 30% performance improvement compared to the SOEC based on PBF cathode. Meanwhile, the polarization impedance has also decreased by about 60%. The increased current density originates from the improved oxygen vacancy. Furthermore, the cell with this active catalyst exhibits a stable CO2 electrolysis performance for 70 h operation at a stable voltage of 1.3 V at 800 ℃, and no carbon deposition is detected after the long-term test. The research suggests that PBFM can be a talented candidate as SOEC cathode for CO2 electrolysis.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:National Key Research and Development Program of China (2020YFB1506304). |
|
|
1 Song Y, Zhang X, Xie K, et al. Advanced Materials, 2019, 31(50), 1902033. 2 Cheng D, Negreiros F R, Aprà E, et al. ChemSusChem, 2013, 6, 944. 3 Yang C, Tian Y, Pu J, et al. ACS Sustainable Chemistry & Engineering, 2022, 10, 1047. 4 Tian Y F, Wang W J, Liu Y, et al. ACS Catalysis, 2021, 11, 3704. 5 Wang W, Tian Y, Liu Y, et al. Science China-Materials, 2021, 64, 1621 6 Tian Y, Zheng H, Zhang L, et al. Journal of the Electrochemical Society, 2018, 165, F17. 7 Tian Y, Zhang L, Liu Y, et al. Journal of Materials Chemistry A, 2019, 7, 6395. 8 Kleiminger L, Li T, Li K, et al. RSC Advances, 2014, 4, 50003. 9 Chen L, Chen F, Xia C. Energy & Environmental Science, 2014, 7, 4018. 10 Gao L, Fu Q, Wei M, et al. ACS Catalysis, 2016, 6(10), 6814. 11 Chen M, Liu Y, Bentzen J, et al. Journal of the Electrochemical Society, 2013, 160(8), F883. 12 Li W, Shi Y, Luo Y, et al. Journal of Power Sources, 2015, 276, 26. 13 Keane M, Fan H, Han M, et al. International Journal of Hydrogen Energy, 2014, 39(33), 18718. 14 Ma Z, Zhou J, Li Y, et al. Fuel Cells, 2020, 20(6), 650. 15 Bidrawn F, Kim G, Corre G, et al. Electrochemical and Solid State Letters, 2008, 11(9), B167. 16 Li J, Zhou X, Wu C, et al. Chemical Engineering Journal, 2022, 438, 135446. 17 Li Y, Tian Y, Li J, et al. Journal of Power Sources, 2022, 528, 231202. 18 Yue X, Irvine J T S. Journal of the Electrochemical Society, 2012, 159(8), F442 19 Park S, Han H, Yoon W, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6564. 20 Yue X, Irvine J T S. Solid State Ionics, 2012, 225, 131. 21 Fagg D P, Kharton V V, Kovalevsky A V, et al. Journal of the European Ceramic Society, 2001, 21, 1831. 22 Yokokawa H, Sakai N, Kawada T, et al. Solid State Ionics, 1992, 52, 43. 23 Li J, Wei B, Cao Z, et al. ChemSusChem, 2018, 11, 254. 24 Mahata A, Datta P, Basu R N. Ceramics International, 2017, 43, 433. 25 Ren B, Croiset E, Ricardez S L. Journal of Catalysis, 2020, 383, 273. 26 Lv H, Zhou Y, Zhang X, et al. Journal of Energy Chemistry, 2019, 35, 71. 27 Zhou Y, Zhou Z, Song Y, et al. Nano Energy, 2018, 50, 43. 28 Liu S, Liu Q, Luo J. Journal of Materials Chemistry A, 2017, 5, 2268. 29 Sun C, Bian L, Qi J, et al. Journal of Power Sources, 2022, 521, 230984. 30 Deleebeeck L, Fournier J L, Birss V. Solid State Ionics, 2010, 181, 1229. 31 Zhu J X, Zhang W Q, Li Y F, at al. Applied Catalysis B:Environmental, 2020, 268, 118389. 32 Sun M, Zou L, Wang Z, et al. Electrochimica Acta, 2019, 327, 135017. 33 Wang Z, Zou L, Guo S, et al. Journal of Power Sources, 2020, 468, 228362. 34 Lee S, Kim M, Lee K T, et al. Advanced Energy Materials, 2021, 11, 2100339. 35 Liu C, Li S, Gao J, et al. ACS Applied Materials & Interfaces, 2021, 13, 8229. 36 Baddour-Hadjean R, Pereira-Ramos J. Chemical Reviews, 2010, 110, 1278. |
|
|
|