ELECTROCHEMICAL ENERGY MATERIALS AND DEVICES |
|
|
|
|
|
Research Progress and Challenges of Anode for Reversible Zinc-Air Batteries |
WANG Yue, ZHOU Benji, XU Nengneng*, QIAO Jinli*
|
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China |
|
|
Abstract Zinc-air battery has attracted wide attention because of its high safety, large capacity, low cost and environmental friendliness. Among them, the design and development of cathode bifunctional catalyst for zinc-air battery has made breakthrough progress. Therefore, the reversibility of zinc anode has become the key to determine the charging and discharging performance of zinc-air battery. However, the zinc anode still faces serious challenges such as dendrite, deformation, passivation and hydrogen evolution corrosion, which directly hinders the practical application of reversible zinc-air batteries. Therefore, this paper systematically introduces the research status of zinc anode from four aspects, dendrite formation, electrode deformation, passivation and hydrogen evolution corrosion. The effects of additives, coatings, separators and charging methods on the growth of zinc dendrites are discussed. The mechanism of electrode deformation and common solutions are studied. The key factors and influencing mechanism of zinc anode passivation are summarized. The inhibition of alloy components on hydrogen evolution corrosion is analyzed. Finally, based on the current research status of zinc anode, this paper looks forward to various strategies and research directions for obtaining stable and reversible zinc anode.
|
Published: 25 March 2024
Online: 2024-04-07
|
|
Fund:Fundamental Research Funds for the Central Universities (2232022D-18), Shanghai Sailing Program (22YF1400700), and National Natural Science Foundation of China (21972017). |
Corresponding Authors:
*nengnengxu@dhu.edu.cn;qiaojl@dhu.edu.cn
|
|
|
1 Walsh F C. Pure and Applied Chemistry, 2001, 73(12), 1819. 2 Lopes P P. ACS Materials Au, 2023, 3(1), 8. 3 Wang H F, Xu Q. Matter, 2019, 1(3), 565. 4 Zhang X, Wang X G, Xie Z, et al. Green Energy & Environment, 2016, 1(1), 4. 5 Siahrostami S. ACS Energy Letters, 2022, 7(8), 2717. 6 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29(7), 1604685. 7 Huang Y, Wang Y, Tang C, et al. Advanced Materials, 2019, 31(13), 1803800. 8 Fu J, Hassan F M, Zhong C, et al. Advanced Materials, 2017, 29(35), 1702526. 9 Rahman M A, Wang X, Wen C. Journal of the Electrochemical Society, 2013, 160(10), A1759. 10 Mckerracher R D, Poncedeleon C, Wills R G A, et al. ChemPlusChem, 2015, 80(2), 323. 11 Yan X, Ha Y, Wu R. Small Methods, 2021, 5(4), 2000827. 12 Yang D, Zhang L, Yan X, et al. Small Methods, 2017, 1(12), 1700209. 13 Liu H, Liu Q, Wang Y, et al. Chinese Chemical Letters, 2022, 33(2), 683. 14 Caramia V, Bozzini B. Materials for Renewable and Sustainable Energy, 2014, 3(2), 28. 15 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018. 16 Chang J, Wang G, Yang Y. Small Science, 2021, 1(10), 2100044. 17 Ramakrishnan S, Balamurugan J, Vinothkannan M, et al. Applied Catalysis B: Environmental, 2020, 279, 119381. 18 Jiao M, Zhang Q, Ye C, et al. ACS Nano, 2022, 16(8), 13223. 19 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018. 20 Zhong Y, Xu X, Wang W, et al. Batteries & Supercaps, 2019, 2(4), 272. 21 Tang K, Hu H, Xiong Y, et al. Angewandte Chemie International Edition, 2022, 61(24). 22 Jiao M, Zhang Q, Ye C, et al. Proceedings of the National Academy of Sciences, 2022, 119(20). 23 Lee D U, Choi J Y, Feng K, et al. Advanced Energy Materials, 2014, 4(6), 1301389. 24 Xiao W, Cordeiro M A L, Gao G, et al. Nano Energy, 2018, 50, 70. 25 Mohamad A A. Journal of Power Sources, 2006, 159(1), 752. 26 Yang D, Tan H, Rui X, et al. Electrochemical Energy Reviews, 2019, 2(3), 395. 27 Fu J, Liang R, Liu G, et al. Advanced Materials, 2019, 31(31), 1805230. 28 Li G, Liu Z, Huang Q, et al. Nature Energy, 2018, 3(12), 1076. 29 Cui B F, Han X P, Hu W B. Small Structures, 2021, 2(6), 2000128. 30 He M, Shu C, Zheng R, et al. Green Energy & Environment, 2023, 8(1), 318. 31 Chen Z, Yang X, Li W, et al. Small, 2021, 17(39), 2103048. 32 Wang T, Sun J, Hua Y, et al. Energy Storage Materials, 2022, 53, 273. 33 Xiao Y, Shi J, Zhao F, et al. Journal of the Electrochemical Society, 2018, 165(2), A47. 34 Park D J, Aremu E O, Ryu K S. Applied Surface Science, 2018, 456, 507. 35 Hosseini S, Abbasi A, Uginet L O, et al. Scientific Reports, 2019, 9(1), 14958. 36 Masri M N, Mohamad A A. Journal of the Electrochemical Society, 2013, 160(4), A715. 37 Lin M H, Huang C J. Journal of Materials Chemistry A, 2020, 8(39), 20637. 38 Wu Z, Li M, Tian Y, et al. Nano-Micro Letters, 2022, 14(1), 110. 39 Ma G, Miao L, Dong Y, et al. Energy Storage Materials, 2022, 47, 203. 40 Wang J M, Zhang L, Zhang C, et al. Journal of Power Sources, 2001, 102(1-2), 139. 41 Wang R Y, Kirk D W, Zhang G X. Journal of the Electrochemical Society, 2006, 153(5), C357. 42 Wen Y H, Cheng J, Zhang L, et al. Journal of Power Sources, 2009, 193(2), 890. 43 Yadav S K, Deckenbach D, Schneider J J. Batteries, 2022, 8(11), 244. 44 Deckenbach D, Schneider J J. Journal of Power Sources, 2021, 488, 229393. 45 Dong W, Shi J L, Wang T S, et al. RSC Advances, 2018, 8(34), 19157. 46 Li W, Wang K, Zhou M, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22059. 47 Chen S, Chen J, Liao X, et al. ACS Energy Letters, 2022, 7(11), 4028. 48 Liu M, Pu X, Cong Z, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5095. 49 Zhou X, Chen R, Cui E, et al. Energy Storage Materials, 2023, 55, 538. 50 Hao J, Li X, Zhang S, et al. Advanced Functional Materials, 2020, 30(30), 2001263. 51 Wang S, Yang Z, Chen B, et al. Energy Storage Materials, 2022, 47, 491. 52 Liu Y, Liu Q, Xin L, et al. Nature Energy, 2017, 2(7), 17083. 53 Arnot D J, Lim M B, Bell N S, et al. Advanced Energy Materials, 2021, 11(38), 2101594. 54 Díaz-patiño L, Béjar J, Ortiz-ortega E, et al. ChemElectroChem, 2022, 9(12) 55 Vatsalarani J, Trivedi D C, Ragavendran K, et al. Journal of the Electrochemical Society, 2005, 152(10), A1974. 56 Liu M, Cook G M, Yao N P. Journal of the Electrochemical Society, 1981, 128(8), 1663. 57 Wu Y, Zhang Y, Ma Y, et al. Advanced Energy Materials, 2018, 8(36), 1802470. 58 Yang H. Journal of Power Sources, 2004, 128(1), 97. 59 El-sayed A E R, Shilkamy H A E S, Elrouby M. International Journal of Hydrogen Energy, 2021, 46(61), 31239. 60 Wongrujipairoj K, Poolnapol L, Arpornwichanop A, et al. Physica Status Solidi(b), 2017, 254(2), 1600442. 61 Xu P, Wang C, Zhao B, et al. Journal of Colloid and Interface Science, 2021, 602, 859. |
|
|
|