POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Advances in Palladium-Catalyzed Cycloaddition Reactions for the Construction of Medium-ring Compounds |
PI Xiaolin, LI Hongpeng, TIAN Yiran, TONG Yingcheng, NI Wenruo, YUAN Tengrui, TANG Zhenyan*
|
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Yunnan Precious Metals Lab Co., Ltd., Sino-Platinum Metals Co.,Ltd., Kunming 650106, China |
|
|
Abstract The medium-ring compounds (7 to 11-membered rings) are widely found in functional molecules, such as many natural products and drugs. These molecules show great medicinal value due to their excellent biological activity and special backbone structure, exemplified by the common anti-cancer drug paclitaxel and the anti-bacterial drug Spiroxin A, and have also exerted a profound impact on many fields including chemistry, medicine and materials. However, the efficient construction of medium-ring compounds has long been a serious challenge, owing to the unfavorable kinetic and thermodynamic factors. Fortunately, thanks to the unremitting efforts of researchers, there have emerged and been proved effective several new catalytic systems for cycloaddition reactions in recent years, among which the palladium-catalyzed cycloaddition reactions have found rapid development in this field by virtue of high efficiency, high selectivity and atomic economy. This article details global research progress in the past five years on the use of palladium-catalyzed cycloaddition reactions to construct medium-ring compounds, expecting to provide helpful information and insight for the research community.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Key R & D Program of China(2022YFE0105100),Funds of the Science and Technology Project of Yunnan Province-Major Project (202101AS070049),and Science and Technology Projects of Yunnan Precious Metals Lab (YPML-2022050210, YPML-2022050232). |
|
|
1 Li R, Xu X T, Ye M C. Chinese Journal of Organic Chemistry, 2020, 40(10), 3196 (in Chinese). 李然, 徐学涛, 叶萌春. 有机化学, 2020, 40(10), 3196. 2 Yet L. Chemical Reviews, 2000, 100(8), 2963. 3 Faulkner D J. Natural Product Reports, 1984, 1(3), 251. 4 Illuminati G, Mandolini L. Accounts of Chemical Research, 1981, 14(4), 95. 5 Galli C, Mandolini L. European Journal of Organic Chemistry, 2000, 2000(18), 3117. 6 Zhang X Y, Lin L, Li J, et al. Chinese Journal of Organic Chemistry, 2021, 41(5), 1878 (in Chinese). 张馨元, 林礼, 李静, 等. 有机化学, 2021, 41(5), 1878. 7 Yu X C, Zhang C C, Wang L T, et al. Organic Chemistry Frontiers, 2022, 9(11), 4757. 8 Wang C, Yang S, Huang Z, et al. Molecules, 2022, 27(6), 2. 9 Zhou W J, Zhang Y H, Cao G M, et al. Chinese Journal of Organic Chemistry, 2017, 37(6), 1322 (in Chinese). 周文俊, 张逸寒, 曹光梅, 等. 有机化学, 2017, 37(6), 1322. 10 Singh V, Sahu P K, Sahu B C, et al. Journal of Organic Chemistry, 2009, 74(16), 6092. 11 Wang L N, Yu Z X. Chinese Journal of Organic Chemistry, 2020, 40(11), 3536 (in Chinese). 王路宁, 余志祥. 有机化学, 2020, 40(11), 3536. 12 Baroncelli M, Mao Q, Galle S, et al. Physical Chemistry Chemical Phy-sics, 2020, 22(8), 4699. 13 Tao L, Wei Y, Shi M. Advanced Synthesis & Catalysis, 2021, 363(22), 5155. 14 Zhu C, Yang B, Mai B K, et al. Journal of the American Chemical Society, 2018, 140(43), 14324. 15 Souillart L, Cramer N. Chemical Reviews, 2015, 115(17), 9410. 16 Han Y P, Song X R, Qiu Y F, et al. Organic Letters, 2016, 18(5), 940. 17 Anand A, Singh P, Kumar V, et al. RSC Advances, 2019, 9(44), 25554. 18 Lainhart B C, Alexanian E J. Organic Letters, 2015, 17(5), 1284. 19 Trost B M, Shen H C, Horne D B, et al. Chemistry a European Journal, 2005, 11(8), 2577. 20 Mao Y H, Gao Y F, Miao Z W. Chinese Journal of Organic Chemistry, 2022, 42(7), 1904 (in Chinese). 毛沅浩, 高延峰, 苗志伟, 等. 有机化学, 2022, 42 (7), 1904. 21 Li M, Wang Y, Xu Y H. Chinese Journal of Organic Chemistry, 2021, 41(8), 3073 (in Chinese). 李曼, 汪颖, 徐允河. 有机化学, 2021, 41(8), 3073. 22 Daraie M, Heravi M M, Kazemi S S. Journal of Coordination Chemistry, 2019, 72(13), 2279. 23 Zhang L, Yang C, Guo X F, et al. Chinese Journal of Organic Chemistry, 2021, 41(9), 3492 (in Chinese). 张雷, 杨晨, 郭雪峰, 等. 有机化学, 2021, 41(9), 3492. 24 Zhao P, Huang Z Y, Zhao C S, et al. Journal of Heterocyclic Chemistry, 2019, 56(1), 108. 25 Chowdhury C, Sasmal A K, Achari B. Organic & Biomolecular Chemistry, 2010, 8(21), 4971. 26 Kawada H, Iwamoto M, Utsugi M, et al. Organic Letters, 2004, 6(24), 4491. 27 Yue G Z, Liu B. Chinese Journal of Organic Chemistry, 2020, 40(10), 3132 (in Chinese). 乐贵洲, 刘波. 有机化学, 2020, 40(10), 3132. 28 Trost B M, Huang Z, Murhade G M. Science, 2018, 362(6414), 564. 29 Perrin C L, Agranat I, Bagno A, et al. Pure and Applied Chemistry, 2022, 94(4), 353. 30 Huisgen R. Angewandte Chemie International Edition in English, 1963, 2(10), 565. 31 Jiang F, Yuan F R, Jin L W, et al. ACS Catalysis, 2018, 8(11), 10234. 32 Wang J, Blaszczyk S A, Li X, et al. Chemical Reviews, 2021, 121(1), 110. 33 Wang J, Zhao L, Zhu C, et al. Chinese Chemical Letters, 2022, 33(10), 4549. 34 Mao B M, Liu H L, Yan Z Y, et al. Angewandte Chemie International Edition, 2020, 59(28), 11316. 35 Trost B M, Zuo Z J. Angewandte Chemie International Edition, 2020, 59(3), 1243. 36 Jia Z L, An X T, Deng Y H, et al. Organic Letters, 2021, 23(3), 745. 37 Ohmatsu K, Kawai S, Imagawa N, et al. ACS Catalysis, 2014, 4(12), 4304. 38 Anschütz R, Leather W. Berichte der deutschen chemischen Gesellschaft, 2006, 18(1), 715. 39 Wender P A, Takahashi H, Witulski B. Journal of the American Chemical Society, 1995, 117(16), 4720. 40 Jiao L, Yu Z X. Journal of Organic Chemistry, 2013, 78(14), 6842. 41 Gao K, Zhang Y G, Wang Z M, et al. Chemical Communications, 2019, 55(13), 1859. 42 Wu Y, Yuan C H, Wang C, et al. Organic Letters, 2017, 19(23), 6268. 43 Li M M, Xiong Q, Qu B L, et al. Angewandte Chemie, 2020, 59(40), 17429. 44 Zhao H W, Ding W Q, Wang L R, et al. European Journal of Organic Chemistry, 2020, 2020(34), 5557. 45 Gao X, Zhu D Y, Chen Y H, et al. Organic Letters, 2020, 22(18), 7158. 46 Khan S, Ahmad T, Rasheed T, et al. Coordination Chemistry Reviews, 2022, 462. 47 Wang M, Huang Z J, Xu J F, et al. Journal of the American Chemical Society, 2014, 136(4), 1214. 48 Singha S, Patra T, Daniliuc C G, et al. Journal of the American Chemical Society, 2018, 140(10), 3551. 49 Zhang X, Li X, Li J L, et al. Chemical Science, 2020, 11(11), 2888. 50 Zheng Y, Qin T T, Zi W W. Journal of the American Chemical Society, 2021, 143(2), 1038. 51 Yang B, Zuo L H, Chang X W, et al. Organic Letters, 2021, 23(2), 351. 52 Fort A W. Journal of the American Chemical Society, 1962, 84(24), 4979. 53 Lam H, Lautens M. Synthesis Stuttgart, 2020, 52(17), 2427. 54 Selvaraj K, Chauhan S, Sandeep K, et al. Chemistry an Asian Journal, 2020, 15(16), 2380. 55 Cheng Q, Xie J H, Weng Y C, et al. Angewandte Chemie International Edition, 2019, 58(17), 5739. 56 Liu Y Z, Wang Z G, Huang Z S, et al. Angewandte Chemie International Edition, 2020, 59(3), 1238. 57 Kumari P, Liu W W, Wang C J, et al. Chinese Journal of Chemistry, 2020, 38(2), 151. 58 Dai W H, Li C P, Liu Y C, et al. Organic Chemistry Frontiers, 2020, 7(18), 2612. 59 Chai W W, Zhou Q Y, Ai W N, et al. Journal of the American Chemical Society, 2021, 143(9), 3595. 60 Zheng Y, Qin T Z, Zi W W. Journal of the American Chemical Society, 2021, 143(2), 1038. 61 Trost B M, Huang Z X. Angewandte Chemie International Edition, 2019, 58(19), 6396. 62 Rong Z Q, Yang L C, Liu S, et al. Journal of the American Chemical Society, 2017, 139(43), 15304. 63 Yuan C H, Wu Y, Wang D, et al. Advanced Synthesis & Catalysis, 2018, 360(4), 652. 64 Niu B, Wu X Y, Wei Y, et al. Organic Letters, 2019, 21(12), 4859. 65 Zhao H W, Wang L R, Guo J M, et al. Advanced Synthesis & Catalysis, 2019, 361(20), 4761. 66 Gao C, Wang X H, Liu J T, et al. Acs Catalysis, 2021, 11(5), 2684. 67 Li Q Y, Pan R, Wang M H, et al. Organic Letters, 2021, 23(6), 2292. 68 Okumura S, Sun F Z, Ishida N, et al. Journal of the American Chemical Society, 2017, 139(36), 12414. 69 Zhu M H, Zhang X W, Usman M, et al. ACS Catalysis, 2021, 11(9), 5703. 70 Yang L C, Rong Z Q, Wang Y N, et al. Angewandte Chemie International Edition, 2017, 56(11), 2927. 71 Yang G Q, Ke Y M, Zhao Y. Angewandte Chemie International Edition, 2021, 60(23), 12775. 72 Liu Y, He Y C, Liu Y, et al. Organic Chemistry Frontiers, 2021, 8(24), 7004. 73 Li Q Z, Guan Y L, Huang Q W, et al. ACS Catalysis, 2023. 74 Xia C, Wang D C, Qu G R, et al. Organic Chemistry Frontiers, 2020, 7(12), 1474. 75 Scuiller A, Karnat A, Casaretto N, et al. Organic Letters, 2021, 23(6), 2332. 76 Uno H, Imai T, Harada K, et al. ACS Catalysis, 2020, 10(2), 1454. 77 Xu H, Khan S, Li H, et al. Organic Letters, 2019, 21(1), 214. 78 Shintani R, Murakami M, Hayashi T. Journal of the American Chemical Society, 2007, 129(41), 12356. 79 You Y, Li Q, Zhang Y P, et al. Chemcatchem, 2022, 14(9), e202101887. 80 Cai W, Zhou Y M, He Y L, et al. Organic Letters, 2021, 23(14), 5430. 81 Shintani R, Murakami M, Tsuji T, et al. Organic Letters, 2009, 11(24), 5642. 82 Li K, Yang S, Zheng B, et al. Chemical Communications, 2022, 58(46), 6646. 83 Lee K R, Ahn S, Lee S G. Organic Letters, 2021, 23(9), 3735. 84 Xie H L, Yang Z K, Tang L N, et al. Chemical Communications, 2022, 58(75), 10560. 85 Liu Z T, Hu X P. Advanced Synthesis & Catalysis, 2019, 361(4), 836. 86 Krishnan K S, Kuthanapillil J M, Rajan R, et al. European Journal of Organic Chemistry, 2007, 2007(35), 5847. 87 Wei Y, Liu S, Li M M, et al. Journal of the American Chemical Society, 2019, 141(1), 133. 88 Das P, Gondo S, Nagender P, et al. Chemical Science, 2018, 9(13), 3276. 89 Mose R, Preegel G, Larsen J, et al. Nature Chemistry, 2017, 9(5), 487. 90 Wang Y N, Yang L C, Rong Z Q, et al. Angewandte Chemie International Edition, 2018, 57(6), 1596. 91 Uno H, Kawai K, Shiro M, et al. ACS Catalysis, 2020, 10(23), 14117. 92 Wu H H, Fan X Z, Tang Z, et al. Organic Letters, 2021, 23(7), 2802. 93 Doering W V, Wiley D W. Tetrahedron, 1960, 11(3), 183. 94 Zhang Q L, Xiong Q, Li M M, et al. Angewandte Chemie International Edition, 2020, 59(33), 14096. |
|
|
|