INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Progress in the Preparation and Degradation Performance of Cuprous Oxide-based Photocatalysts |
ZHAO Qiang1,2, LI Shuying1,3, GUO Zhinan1, XU Lin1, ZHAO Yibo1, LYU Jing1,3, SHANG Jianpeng1,2, GUO Yong1,2, WANG Junli1,3,*
|
1 School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China 2 Shanxi Province Union Laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, Shanxi, China 3 Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, Shanxi, China |
|
|
Abstract Cu2O is a kind of p-type semiconductor, which has a wide application prospect in the field of photocatalysis. By adjusting the morphology and size of Cu2O, constructing the heterojunction structure, designing the composite material to increase the specific surface area and electrical conductivity, the light utilization rate of Cu2O was improved and the photogenerated electron-hole pair recombination rate was reduced, thus improving the photocatalytic activity and photostability of Cu2O, and promoting its application in the field of photocatalytic degradation of pollutant. In this paper, the methods to enhance the photocatalytic performance of Cu2O, including metal doping, semiconductor heterostructure construction and composites synthesis, were reviewed. Its application in photocatalytic degradation of organic pollutants and the enhancement mechanism of heterojunction were summarized. In addition, the shortcomings of current research were pointed out. The development and application prospect of cuprous oxide based photocatalysis were also prospected.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Natural Science Foundation of China (21908135), the Natural Science Foundation of Shanxi Province, China(201901D111308, 201901D211435, 201801D221057), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2019-20, 20240027), PhD Research Startup Foundation of Shanxi Datong University (2018-B-01, 2020-B-02), Postgraduate Education Innovation Project of Shanxi Datong University(21CX22, 22CX17), Shanxi Province Innovation and Entrepreneurship Training Program for College Students(20220807, 2016172). |
|
|
1 Meng X, Li Z, Chen J,et al. Applied Surface Science, 2018, 433, 76. 2 Yu Z, Li F, Yang Q, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(9), 7840. 3 Yoon S, Kim M, Kim I S,et al. Journal of Materials Chemistry A, 2014, 2, 11621. 4 Wei Z, Xin T, Xiao W,et al. Chemical Engineering Journal, 2019, 361, 1173. 5 Zhong S, Lv C, Shen M,et al. Journal of Materials Science: Materials in Electronics, 2019, 30(4), 4152. 6 Dadigala R, Bandi R, Gangapuram B R, et al. Nanoscale Advances, 2019, 1(1), 322. 7 Li R, Zhang F, Wang D,et al. Nature Communications, 2013, 4, 1432. 8 Zhang J, Ma H, Liu Z. Applied Catalysis B: Environmental, 2017, 201, 84. 9 Cai T, Wang L, Liu Y, et al. Applied Catalysis B: Environmental, 2018, 239, 545. 10 Fang H, Pan Y, Yin M, et al. Journal of Solid State Chemistry, 2019, 280, 120981. 11 Ng C H B, Fan W Y. Journal of Physical Chemistry B, 2006, 110(42), 20801. 12 Zhang J T, Liu J F, Peng Q,et al. Chemistry of Materials, 2006, 18(4), 867. 13 Zhang H, Zhu Q, Zhang Y,et al. Advanced Functional Materials, 2007, 17(15), 2766. 14 Zhong J H, Li G R, Wang Z L,et al. Inorganic Chemistry, 2011, 50(3), 757. 15 Kuo C H, Yang Y C, Gwo S,et al. Journal of the American Chemical Society, 2011, 133(4), 1052. 16 Xiang J Y, Wang X L, Xia X H,et al. Electrochimica Acta, 2010, 55(17), 4921. 17 White B, Yin M, Hall A,et al. Nano Letters, 2006, 6(9), 2095. 18 Leng M, Liu M, Zhang Y,et al. Journal of the American Chemical Society, 2010, 132(48), 17084. 19 Paracchino A, Laporte V, Sivula K,et al. Nature Materials, 2011, 10(6), 456. 20 Hara M, Kondo T, Komoda M, et al. Chemical Communications, 1998, 3, 357. 21 Roos A, Karlsson B. Solar Energy Materials, 1983, 7(4), 467. 22 Gou L, Murphy C J. Nano Letters, 2003, 3(2), 231. 23 Kim M H, Lim B, Lee E P, et al. Journal of Materials Chemistry, 2008, 18(34), 4069. 24 Kuo C H, Huang M H. Nano Today, 2010, 5(2), 106. 25 Chang I C, Chen P C, Tsai M C,et al. Crystengcomm, 2013, 15(13), 2363. 26 Nikam A V, Arulkashmir A, Krishnamoorthy K, et al. Crystal Growth & Design, 2014, 14(9), 4329. 27 Cao Y Y, Xu Y Y, Hao H Y, et al. Materials Letters, 2014, 114, 88. 28 Kumar S, Parlett C M A, Isaacs M A,et al. Applied Catalysis B: Environmental, 2016, 189, 226. 29 Kuo C H, Chen C H, Huang M H. Advanced Functional Materials, 2007, 17(18), 3773. 30 Karthikeyan S, Kumar S, Durndell L J,et al. Chemcatchem, 2018, 10(16), 3554. 31 Xu H L, Wang W Z, Zhu W. Journal of Physical Chemistry B, 2006, 110(28), 13829. 32 Siegfried M J, Choi K S. Angewandte Chemie International Edition, 2005, 44(21), 3218. 33 Kuo C H, Huang M H. Journal of Physical Chemistry C, 2008, 112(47), 18355. 34 Pang H, Gao F, Lu Q Y. Crystengcomm, 2010, 12(2), 406. 35 Zhang Y, Deng B, Zhang T, et al. Journal of Physical Chemistry C, 2010, 114(11), 5073. 36 Liang X, Gao L, Yang S,et al. Advanced Materials, 2009, 21(20), 2068. 37 Tan Y, Xue X, Peng Q, et al. Nano Letters, 2007, 7(12), 3723. 38 Wang W Z, Wang G H, Wang X S, et al. Advanced Materials, 2002, 14(1), 67. 39 Guan L, Pang H, Wang J, et al. Chemical Communications, 2010, 46(37), 7022. 40 Musselman K P, Mulholland G J, Robinson A P,et al. Advanced Mate-rials, 2008, 20(23), 4470. 41 Ju H K, Lee J K, Lee J, et al. Current Applied Physics, 2012, 12(1), 60. 42 Haynes K M, Perry C M, Rivas M, et al. ACS Applied Materials & Interfaces, 2015, 7(1), 830. 43 Zhang Z, Che H, Wang Y, et al. Industrial & Engineering Chemistry Research, 2012, 51(3), 1264. 44 Sun S, Kong C, You H,et al. Crystengcomm, 2012, 14(1), 40. 45 Chen W, Fan Z, Lai Z. Journal of Materials Chemistry A, 2013, 1(44), 13862. 46 Ai Z, Zhang L, Lee S, et al. Journal of Physical Chemistry C, 2009, 113(49), 20896. 47 Zhang W, Yang X, Zhu Q,et al. Industrial & Engineering Chemistry Research, 2014, 53(42), 16316. 48 Lee C, Shin K, Lee Y J,et al. Catalysis Today, 2018, 303, 313. 49 Xiong J, Li Z, Chen J, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 15716. 50 Hu Z, Mi Y, Ji Y,et al. Nanoscale, 2019, 11(35), 16445. 51 Sharma K, Maiti K, Kim N H,et al. Composites Part B: Engineering, 2018, 138, 35. 52 Wei Q, Wang Y, Qin H, et al. Applied Catalysis B: Environmental, 2018, 227, 132. 53 Liu X W. Langmuir, 2011, 27(15), 9100. 54 Zhu H, Du M, Yu D,et al. Journal of Materials Chemistry A, 2013, 1(3), 919. 55 Mahmoud M A, Qian W, Mostafa A. Nano Letters, 2011, 11(8), 3285. 56 Wang W C, Lyu L M, Huang M H. Chemistry of Materials, 2011, 23(10), 2677. 57 Miller E B, Zahran E M, Knecht M R,et al. Applied Catalysis B: Environmental, 2017, 213, 147. 58 Yu X, Zhang J, Zhang J,et al. Chemical Engineering Journal, 2019, 374, 316. 59 Heng B, Xiao T, Tao W, et al. Crystal Growth & Design, 2012, 12(8), 3998. 60 Han G F, Du W H, An B L,et al. Scripta Materialia, 2018, 153, 104. 61 Lu Y M, Chen C Y, Lin M H. Thin Solid Films, 2005, 480, 482. 62 Li H J, Pu C Y, Ma C Y, et al. Thin Solid Films, 2011, 520(1), 212. 63 Yan C, Luo W, Yuan H, et al. Applied Catalysis B: Environmental, 2022, 308, 121191. 64 Qiang Y, Wang X, Yang Y, et al. Journal of Functional Materials, 2020, 51(2), 2193(in Chinese). 强义凯, 王新智, 杨迎春, 等. 功能材料, 2020, 51(2), 2193. 65 Bai Q, Wang W, Zhang Q, et al. Journal of Applied Physics, 2012, 111(2), 23709. 66 Wen S, Zou Y, Hu F, et al. Journal of Synthetic Crystals, 2015, 44(11), 3361(in Chinese). 文思逸, 邹苑庄, 胡飞, 等. 人工晶体学报, 2015, 44(11), 3361. 67 Liu X, Yuan B, Xia Y, et al. Journal of Functional Materials, 2019, 50(10), 10047(in Chinese). 刘晓波, 袁斌霞, 夏阳春, 等. 功能材料, 2019, 50(10), 10047. 68 Jiang T, Xie T, Chen L,et al. Nanoscale, 2013, 5(7), 2938. 69 Deo M, Shinde D, Yengantiwar A,et al. Journal Materials Chemistry, 2012, 22(33), 17055. 70 Zou X, Fan H, Tian Y,et al. Crystengcomm, 2014, 16(6), 1149. 71 Kandjani A E, Sabri Y M, Periasamy S R,et al. Langmuir, 2015, 31(39), 10922. 72 Wu S C, Tan C S, Huang M H. Advanced Functional Materials, 2017, 27(9), 1604635. 73 Ren S, Zhao G, Wang Y,et al. Nanotechnology, 2015, 26(12), 125403. 74 Hou Y, Li X Y, Zhao Q D,et al. Applied Physics Letters, 2009, 95(9), 093108. 75 Huang L, Peng F, Wang H J,et al. Catalysis Communications, 2009, 10(14), 1839. 76 Wang M, Sun L, Lin Z,et al. Energy & Environmental Science, 2013, 6(4), 1211. 77 Liu L, Yang W, Sun W,et al. ACS Applied Materials & Interfaces, 2015, 7(3), 1465. 78 Liu L, Gu X, Sun C,et al. Nanoscale, 2012, 4(20), 6351. 79 Yang L, Luo S, Li Y,et al. Environmental Science & Technology, 2010, 44(19), 7641. 80 Fu J, Cao S, Yu J. Journal of Materiomics, 2015, 1(2), 124. 81 Jiang D, Xue J, Wu L,et al. Applied Catalysis B: Environmental, 2017, 211, 199. 82 Yu H, Yu J, Liu S,et al. Chemistry of Materials, 2007, 19(17), 4327. 83 Liu X, Chen J, Liu P, et al. Applied Catalysis A: General, 2016, 521, 34. 84 Chen J, Liu X, Zhang H,et al. Materials Letters, 2016, 182, 47. 85 Yurddaskal M, Dikici T, Celik E. Ceramics International, 2016, 42(15), 17749. 86 Wang P, Wang J, Wang X,et al. Current Nanoscience, 2015, 11(4), 462. 87 Ma H, Liu Y, Fu Y,et al. Australian Journal of Chemistry, 2014, 67(5), 749. 88 Li H, Su Z, Hu S,et al. Applied Catalysis B: Environmental, 2017, 207, 134. 89 Lakhera S K, Watts A, Hafeez H Y,et al. Catalysis Today, 2018, 300, 58. 90 Tian Q, Wu W, Sun L,et al. ACS Applied Materials & Interfaces, 2014, 6(15),13088. 91 Li F, Dong B. Ceramics International, 2017, 43(17), 16007. 92 Luo Y, Huang Q, Li B,et al. Applied Surface Science, 2015, 357, 1072. 93 Shen H, Wang J, Jiang J,et al. Chemical Engineering Journal, 2017, 313, 508. 94 Li Z P, Wen Y Q, Shang J P,et al. Chinese Chemical Letters, 2014, 25(2), 287. 95 Bi Y, Ouyang S, Umezawa N, et al. Journal of American Chemical Society, 2011, 133(17), 6490. 96 Li Z, Dai K, Zhang J,et al. Materials Letters, 2017, 206, 48. 97 Hou G, Zeng X, Gao S. Materials Letters, 2019, 238, 116. 98 Liu Y, Chu Y, Zhuo Y, et al. Advanced Functional Materials, 2007, 17(6), 933. 99 Hu X, Zhou X, Wang R,et al. Applied Catalysis B: Environmental, 2014, 154, 44. 100 He J, Shao D W, Zheng L C,et al. Applied Catalysis B: Environmental, 2017, 203, 917. 101 Xu Z K, Han L, Hu P,et al. Catalysis Science & Technology, 2014, 4(10), 3615. 102 Kim T G, Yeon D H, Kim T, et al. Applied Physics Letters, 2013, 103, 043904. 103 Lou S, Wang W, Wang L,et al. Journal of Alloys and Compounds, 2018, 781, 508. 104 He R, Cao S W, Zhou P,et al. Chinese Journal of Catalysis, 2014, 35(7), 989. 105 García-Pérez U M, Martínez-de la Cruz A, Sepúlveda-Guzmán S,et al. Ceramics International, 2014, 40(3), 4631. 106 Wang W, Huang X, Wu S,et al. Applied Catalysis B: Environmental, 2013, 134, 293. 107 Deng Y, Tang L, Zeng G,et al. Environmental Science: Nano, 2017, 4(7), 1494. 108 Chen W, Liu T Y, Huang T,et al. Applied Surface Science, 2015, 355, 379. 109 Liu L, Ding L, Liu Y, et al. Applied Surface Science, 2016, 364, 505. 110 Li J, Yuan H, Zhu Z. Journal of Molecular Catalysis A: Chemical, 2015, 410, 133. 111 Xia Y, He Z, Yang W,et al. Materials Research Express, 2018, 5(2), 025504. 112 Cui W, An W, Liu L,et al. Journal of Hazardous Materials, 2014, 280, 417. 113 Tian Y, Chang B, Fu J,et al. Journal of Solid State Chemistry, 2014, 212, 1. 114 Li D, Zan J, Wu L,et al. Industrial & Engineering Chemistry Research, 2019, 58(10), 4000. 115 Liu L, Qi Y, Hu J,et al. Materials Letters, 2015, 158, 278. 116 Yan X, Xu R, Guo J J,et al. Materials Research Bulletin, 2017, 96, 18. 117 Liang S, Zhou Y, Cai Z, et al. Applied Organometallic Chemistry, 2016, 30(11), 932. 118 Zuo S, Chen Y, Liu W,et al. Ceramics International, 2017, 43(3), 3324. 119 Liu Y, Dong H, Jia H,et al. Journal of Alloys and Compounds, 2015, 644, 159. 120 Tian L, Rui Y, Sun K,et al. Nanomaterials, 2018, 8(1), 33. 121 Yue Y, Zhang P, Wang W, et al. Journal of Hazardous Materials, 2020, 384, 121302. 122 He Z, Xia Y, Tang B,et al. Materials Research Express, 2017, 4(9), 095501. 123 Xia Y, He Z, Hu K,et al. Journal of Alloys and Compounds, 2018, 753, 356. 124 Zhou K, Shi Y, Jiang S,et al. Materials Letters, 2013, 98, 213. 125 Yang L, Chu D, Wang L,et al. Ceramics International, 2016, 42(2), 2502. 126 Zhao Q, Wang J, Li Z,et al. Ceramics International, 2016, 42(11), 13273. 127 Tu K, Wang Q, Lu A,et al. The Journal of Physical Chemistry C, 2014, 118(13), 7202. 128 Nie J, Li C, Jin Z,et al. Carbohydrate Polymers, 2019, 223, 115101. 129 Abulizi A, Yang G, Zhu J J. Ultrasonics-Sonochemistry, 2014, 21(1), 129. 130 Pu Y C, Chou H Y, Kuo W S,et al. Applied Catalysis B: Environmental, 2017, 204, 21. 131 Zou W, Zhang L, Liu L,et al. Applied Catalysis B: Environmental, 2016, 181, 495. 132 Zhang W, Li X, Yang Z,et al. Nanotechnology, 2016, 27(26), 265703. 133 Cai J, Liu W, Li Z. Applied Surface Science, 2015, 358, 146. |
|
|
|