POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in the Biomimetic Modification of Wood Adhesives |
CUI Zheng, LI Jingchao, LI Jianzhang, GAO Qiang*
|
Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract Utilizing formaldehyde-free adhesive to replace formaldehyde-based resin adhesivein the preparation of wood-based panel products has become a research hotspot in wood adhesive technology. It aligns with China’s sustainable development and ‘dual-carbon’ strategy. The biomimetic modification provides a promising approach to improving the properties and performance of wood adhesives. By mimicking biological systems, including biological chemistry and structural principles, non-formaldehyde wood adhesives can be developed with improved water resis-tance, mold resistance, pre-press coating performance, and functional properties. This review summarizes the progress of the biomimetic modification of non-formaldehyde wood adhesives, which are categorized according to biomimetic principles as biological chemical wood adhesives, including inspiration from mussel DOPA (dihydroxyphenylalanine) chemical adhesion or biological mineralization, cell wall construction, and recoupling bonding network process, and structural wood adhesives, including inspiration from gecko toe nanobrush structure, spider silk microphase separation structure, shell ‘brick and mortar’ structure, squid bone porous structure, and spring spiral structure. The principles, formulation design, adhesive properties, and potential applications of biomimetic wood adhesives are highlighted to provide insights into the development and high-value utilization of wood adhesives.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:National Natural Science Foundation of China (32071702), Beijing Forestry University Outstanding Young Talent Cultivation Project (2019JQ03004). |
|
|
1 Gao Q, Liu Z, Li J Z. Journal of Forestry Engineering, 2020, 5(2), 1(in Chinese). 高强, 刘峥, 李建章. 林业工程学报, 2020, 5(2), 1. 2 Guo X Z, Li Z H, Wan Z W, et al. Journal of Chemical Engineering of Chinese Universities, 2021, 35(4), 579(in Chinese). 郭鑫珠, 李泽珩, 万正威, 等. 高校化学工程学报, 2021, 35(4), 579. 3 Ge M L, Ye Q Q, Kang H J, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(4), 1202(in Chinese). 葛梦龙, 叶倩倩, 康海娇, 等. 硅酸盐通报, 2022, 41(4), 1202. 4 Liu X R, Chen H, Gao Q, et al. China Oils and Fats, 2023, 48(9), 75(in Chinese). 刘欣锐, 陈惠, 高强, 等. 中国油脂, 2023, 48(9), 75. 5 Wang R G, Yang G, Yang B, Applied Chemical Industry, 2017, 46(10), 2043(in Chinese). 王睿聪, 杨光, 杨波. 应用化工, 2017, 46(10), 2043. 6 Pang Y F, Xu W T, Li Q, et al. China Forest Products Industry, 2018, 45(4), 3(in Chinese). 庞艳芳, 徐伟涛, 李琪, 等. 林产工业, 2018, 45(4), 3. 7 Ma X, Bian Q, Hu J, et al. Journal of Controlled Release, 2022, 345, 292. 8 Wang Y, Jeon E J, Lee J, et al. Advanced Materials, 2020, 32(43), e2002118. 9 Krogsgaard M, Nue V, Birkedal H. Chemistry—a European Journal, 2016, 22(3), 844. 10 Lee K, Prajatelistia E, Hwang D S, et al. Chemistry of Materials, 2015, 27(19), 6478. 11 Wang Z, Zhang S, Zhao S, et al. Chemical Engineering Journal, 2021, 404, 127069. 12 Basak S. Biotechnology and Bioprocess Engineering, 2021, 26(1), 10. 13 Yao L, He C, Chen S, et al. Langmuir, 2019, 35(5), 1430. 14 Chen T, Yang M, Yang H, et al. Journal of Industrial and Engineering Chemistry, 2019, 69, 179. 15 Liang Y, Xu H, Li Z, et al. Nano-Micro Letters, 2022, 14(1), 185. 16 Li J, Wu S, Tian X, et al. Chemical Engineering Journal, 2022, 446, 136837. 17 Jiang Y H, Zhang Y Q, Wang Z H, et al. Journal of Colloid and Interface Science, 2022, 628, 356. 18 Guo Q, Zou G, Qian X, et al. Nature Communications, 2022, 13(1), 5771. 19 Degen G D, Cunha K C, Levine Z A, et al. Journal of Physical Chemistry B, 2021, 125(35), 9999. 20 Zuykov M, Hayhurst L, Murakami-Sugihara N, et al. Chemosphere, 2022, 303, 134912. 21 Cho M K, Seo H J, Lee J H, et al. Polymer Chemistry, 2021, 12(48), 7023. 22 Liu G, Zhang X, Lu M, et al. Food Chemistry, 2022, 393, 133337. 23 Novakov N J, Kartalovic B D, Mihaljev Z A, et al. Food Additives & Contaminants Part B-Surveillance, 2021, 14(3), 219. 24 Grigoriou C, Costopoulou D, Vassiliadou I, et al. Molecules, 2021, 26(19), 5953. 25 Wang G L, Cui X, Chen Y, et al. Progress in Chemistry, 2021, 33(12), 2378(in Chinese). 王桂龙, 崔辛, 陈莹, 等. 化学进展, 2021, 33(12), 2378. 26 Li Z, Zhao S, Wang Z, et al. Journal of Hazardous Materials, 2020, 396, 122722. 27 Liu Z, Liu T, Li Y, et al. Journal of Cleaner Production, 2022, 366, 132906. 28 Ma C, Pang H, Cai L, et al. Journal of Cleaner Production, 2021, 308, 127309. 29 Choi Y, Kang K, Son D, et al. ACS Nano, 2022, 16(1), 1368. 30 Gao S, Wang W, Wu T, et al. ACS Applied Materials & Interfaces, 2021, 13(29), 34843. 31 Pang H, Ma C, Zhang S. International Journal of Biological Macromolecules, 2022, 209, 83. 32 Gu W, Liu X, Ye Q, et al. Industrial Crops and Products, 2020, 150, 112424. 33 Song W, Zhang S, Fei B, et al. European Journal of Wood and Wood Products, 2022, 81, 451. 34 Tang W M, Xu Y T, Zhao H, et al. Journal of Forestry Engineering, 2022, 7(3), 136(in Chinese). 唐望明, 徐艳涛, 赵涵, 等. 林业工程学报, 2022, 7(3), 136. 35 Li K, Jin S, Zhou Y, et al. Composites Part B: Engineering, 2022, 240, 109987. 36 Li Y, Huang X, Xu Y, et al. Chemical Engineering Journal, 2022, 430, 133017. 37 Yu Y, Guo Z, Zhao Y, et al. Advanced Materials, 2022, 34(9), 2107523. 38 Chen Y, Shi J. Advanced Materials, 2016, 28(17), 3235. 39 Zhang H, Shu J, Wu J, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 26509. 40 Suksangpanya N, Yaraghi N A, Pipes R B, et al. International Journal of Solids and Structures, 2018, 150, 83. 41 Mirkhalaf M, Dastjerdi A K, Barthelat F. Nature Communications, 2014, 5, 3166. 42 Fernandez J G, Ingber D E. Advanced Materials, 2012, 24(4), 480. 43 Xu Y, Han Y, Li Y, et al. Chemical Engineering Journal, 2022, 437, 135437. 44 Zhang Y, Liu Z, Xu Y, et al. Chemical Engineering Journal, 2021, 426, 130852. 45 Liu Z, Liu T, Gu W, et al. Chemical Engineering Journal, 2022, 449, 137822. 46 Chen Y, Lyu Y, Yuan X, et al. International Journal of Biological Macromolecules, 2022, 219, 611. 47 Xu Y, Zhang X, Wang G, et al. Chemical Engineering Journal, 2022, 447, 137536. 48 Ma C, Pang H, Shen Y, et al. Composites Part B: Engineering, 2022, 242, 110049. 49 Li K, Jin S, Li X, et al. Chemical Engineering Journal, 2021, 421, 129820. 50 Burton R A, Gidley M J, Nature Chemical Biology, 2010, 6(10), 724. 51 Ryden P, Sugimoto-Shirasu K, Smith A C, et al. Plant Physiology, 2003, 132(2), 1033. 52 O’Neill M A, Eberhard S, Albersheim P, et al. Science(New York, NY), 2001, 294(5543), 846. 53 Gu W, Li F, Liu X, et al. Green Chemistry, 2020, 22(4), 1319. 54 Zhou Y, Zeng G, Zhang F, et al. European Polymer Journal, 2022, 164, 110973. 55 Liu X, Xiao X, Zhang T, et al. Industrial Crops and Products, 2022, 180, 114791. 56 Narayan M. Molecules, 2020, 25(22), 5337. 57 Zhang N. Synergistic decomposing of keratinous fibers with chemical-enzyme system and the structure characterization and performance analysis of the products. Ph. D. Thesis, Jiangnan University, China, 2021(in Chinese). 张楠. 角蛋白纤维的化学-酶法协同降解及其产物结构表征和性能分析. 博士学位论文, 江南大学, 2021. 58 Zhang Y C, Alsop R J, Soomro A, et al. Peerj, 2015, 3, e1296. 59 Leng X, Zhou X, Liu J, et al. Materials Horizons, 2021, 8(5), 1538. 60 Li X, Zhou Y, Li J, et al. Macromolecular Materials and Engineering, 2021, 306(12), 2100498. 61 Yan Q, Ma C, Liang Z, et al. Journal of Cleaner Production, 2022, 373, 133709. 62 Zeng G, Zhou Y, Liang Y, et al. Chemical Engineering Journal, 2022, 434, 134632. 63 Zhu C C. Preparation and properties of snail mucus/regenerated silk fibroin nanocomposite. Master’s Thesis, Soochow University, China, 2020(in Chinese). 朱聪聪. 蜗牛粘液/再生丝素蛋白复合材料的制备及性能研究. 硕士学位论文, 苏州大学, 2020. 64 Cho H, Wu G, Jolly J C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28), 13774. 65 Giokas S, Pafilis P, Valakos E. Journal of Molluscan Studies, 2005, 71, 15. 66 Liu Z, Liu T, Jiang H, et al. International Journal of Biological Macromolecules, 2022, 214, 230. 67 Xu Y, Han Y, Shi S Q, et al. Journal of Cleaner Production, 2020, 255, 120303. 68 Autumn K, Peattie A M. Integrative and Comparative Biology, 2002, 42(6), 1081. 69 Ma X K. Study on the mechanism of adhesive fall of gecko and its bionics enlightenment. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021(in Chinese). 马晓康. 大壁虎斜面黏附着落的行为与力学研究及仿生启示. 硕士学位论文, 南京航空航天大学, 2021. 70 Song Y. Bionic research on the synergistically regulatory mechanism among the distributed toe adhesions in geckos. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020(in Chinese). 宋逸. 壁虎黏附的分布式协同调控机制仿生研究. 博士学位论文, 南京航空航天大学, 2020. 71 Liu X, Wang K, Gao Q, et al. Journal of Cleaner Production, 2019, 236, 117591. 72 Zhang J, Long C, Zhang X, et al. Chemical Engineering Journal, 2022, 450, 138387. 73 Zhou Y, Wu T, Zeng G, et al. Journal of Cleaner Production, 2021, 323, 129194. 74 Gu L, Jiang Y, Hu J. Advanced Materials, 2019, 31(48), 1904311. 75 Li C, Ni Z S. Acta Materiae Compositae Sinica, 2022, 39(6), 2515(in Chinese). 李昶, 倪中石. 复合材料学报, 2022, 39(6), 2515. 76 Zhang X, Liu W, Yang D, et al. Advanced Functional Materials, 2019, 29(4), 1806912. 77 Wang Q, Mcardle P, Wang S L, et al. Nature Communications, 2022, 13(1), 4329. 78 Yao P, Chen Z, Liu T, et al. Advanced Materials, 2022, 34(51), 2208236. 79 Wen R. The study of three spidroin gene structures and biomimetic spider silk properties. Ph. D. Thesis, Donghua University, China, 2020(in Chinese). 温睿. 三种蜘蛛丝蛋白基因结构及仿生蛛丝的性能研究. 博士学位论文, 东华大学, 2020. 80 Huemmerich D, Helsen C W, Quedzuweit S, et al. Biochemistry, 2004, 43(42), 13604. 81 Zhang J, Zhang M, Zhang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 9(1), 168. 82 Li J, Chen Y, Zhang F, et al. Chemical Engineering Journal, 2022, 438, 135442. 83 Xu Y, Han Y, Li Y, et al. Journal of Applied Polymer Science, 2022, 139(21), 52202. 84 Xie H L, Lai X J, Wang Y L, et al. Journal of Hazardous Materials, 2019, 365, 125. 85 Yu H P. Construction of bioinspired ordered structured materials by controlled assembly of ultralong hydroxyapatite nanowires and their properties. Ph. D. Thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, 2021(in Chinese). 余汉平. 基于羟基磷灰石超长纳米线可控组装构建仿生有序结构材料及其性能研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. 86 Bai S, Zhang X, Lv X, et al. Advanced Functional Materials, 2020, 30(5), 1908381. 87 Wang L, Wang Y, Dai J, et al. Carbohydrate Polymers, 2021, 251, 117097. 88 Meng Y F, Yang F, Mao L B, et al. Journal of University of Science and Technology of China, 2022, 52(7), 3. 89 Zhu Z H, Shi J F, Yang L, et al. Henan Science and Technology, 2021, 40(18), 28(in Chinese). 祝子浩, 史金飞, 杨柳, 等. 河南科技, 2021, 40(18), 28. 90 Zheng S F, Wang Y Y, Zhang Z K, et al. Journal of Functional Materials, 2024, 55(1), 1048(in Chinese). 郑舒方, 王玉印, 张泽楷, 等. 功能材料, 2024, 55(1), 1048. 91 Cao J, Jin S, Li C, et al. Journal of Cleaner Production, 2021, 299, 126939. 92 Sun X, Ye Q, Shi S Q, et al. Wood Material Science & Engineering, 2021, 18, 254. 93 Mao A, Zhao N, Liang Y, et al. Advanced Materials, 2021, 33(15), 2007348. 94 Xu J, Cao R, Li M, et al. Chemical Engineering Journal, 2021, 420, 127596. 95 Han Y, Xu Y, Shi S Q, et al. Journal of Cleaner Production, 2022, 370, 133365. 96 Xie L H, Du R X. Applied Mechanics and Materials, 2012, 268-270, 1105. 97 Yan S, Xu J, Zhang S, et al. Lwt-Food Science and Technology, 2021, 142, 110881. 98 Ikai A. Biopolymers: lignin, proteins, bioactive nanocomposites, Springer-Verlag, Germany, 2010, pp. 65. 99 Zhou Y, Fang Z, Zeng G, et al. Chemical Engineering Journal, 2022, 436, 135023. |
|
|
|