POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Microcellular Foam Molding Device and Its Visualization |
XU Jiajie1, ZHONG Jincheng2, CHEN Qi2,3, YANG Xin2, GONG Wei1,2,3,*
|
1 School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China 2 School of Materials and Construction Engineering, Guizhou Normal University, Guiyang 550025, China 3 School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China |
|
|
Abstract Microcellular foam molding devices are crucial for fundamental research and preparation of microcellular foam materials. The design and innovation of these devices are directly related to fundamental research on microcellular foaming, as well as improved foam product quality and enhanced production efficiency. There are four main types of molding devices for microcellular foam materials based on the molding methods:batch foam molding, continuous extrusion foam molding, injection foam molding and compression foam molding devices. In this review, we explain the design principles and structural characteristics, present the advantages and disadvantages of different foam molding devices, and summarize the designs of various visualization devices. Free-foaming visualization devices have a simpler structure, lower cost, and are easier to operate compared to visualization devices based on extrusion and injection foam molding methods. Thus, they are currently the most studied and applied devices. However, there is a significant difference between the foaming environment and the conditions during actual production, making it challenging for practical applications. Finally, this paper reviews the current issues to be addressed in designing microcellular foaming material molding devices and proposes design ideas and research prospects of the microcellular foaming material molding devices.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:National Natural Science Foundation of China(52063008),Natural Science Foundation of Guizhou Province(ZK[2021]050),Guizhou Hundred-Level Talent Funding Project([2016]5673). |
|
|
1 Banerjee R, Ray S S. Macromolecular Materials and Engineering, 2020, 305, 2000366. 2 Jiang T H. Microcellular foaming process devicedesign and study on the foaming process. Master’s Thesis, Guizhou University, China, 2009 (in Chinese). 蒋团辉. 微发泡过程装置设计及过程研究. 硕士学位论文, 贵州大学, 2009. 3 Chen P P. Supercritical CO2 mold foaming to prepare polyamide 6 foam and research on the mechanical properties. Master’s Thesis, East China University of Science and Technology, China, 2021 (in Chinese). 陈鹏鹏. 超临界CO2模压发泡制备PA6发泡材料及其力学性能的研究. 硕士学位论文, 华东理工大学, 2021. 4 Zhang F. Characterization and regulation of the injection foaming process of the polymer. Master’s Thesis, Guizhou University, China, 2020 (in Chinese). 张飞. 聚合物注塑发泡过程的调控与表征. 硕士学位论文, 贵州大学, 2020. 5 Cao X M, Hang Z S, Ying S J. Materials Reports, 2012, 26(11), 69 (in Chinese). 曹晓苗, 杭祖圣, 应三九. 材料导报, 2012, 26(11), 69. 6 Singh I, Gandhi A. Journal of Macromolecular Science Part A, DOI:10.1080/10601325.2019.1704178. 7 Guo Q P, Wang J, Park C B, et al. Industrial & Engineering Chemistry Research, 2006, 45, 6153. 8 Xu X, Park C B, Xu D L, et al. Polymer Engineering and Science, 2003, 43, 1378. 9 Tammaro D, Contaldi V, Carbone M P, et al. Journal of Cellular Plastics, 2016, 52, 533. 10 Marrazzo C, Di Maio E, Iannace S, et al. Journal of Cellular Plastics, 2008, 44, 37. 11 宁波格林美孚新材料科技有限公司. 中国专利, CN104708754B, 2018. 12 宁波格林美孚新材料科技有限公司. 中国专利, CN204523621U, 2015. 13 山东大学. 中国专利, CN109571847B, 2019. 14 Wang M Y, Xie L S, Qian B, et al. Journal of Applied Polymer Science, DOI:10.1002/app.44094. 15 Xiong P, Huang X Y, Liu H S, et al. Polymer Materials Science and Engineering, 2015, 31(12), 104 (in Chinese). 熊鹏, 黄兴元, 柳和生, 等. 高分子材料科学与工程, 2015, 31(12), 104. 16 Kaewmesri W, Lee P C, Park C B, et al. Journal of Cellular Plastics, 2006, 42, 405. 17 Nagata T, Tanigaki M, Ohshima M. Polymer Engineering and Science, 2000, 40, 1843. 18 天华化工机械及自动化研究设计院有限公司. 中国专利, CN104325615A, 2015. 19 四川大学. 中国专利, CN109760333B, 2021. 20 安徽卓畅新材料有限公司. 中国专利, CN109338141B, 2020. 21 Kichatov B V, Korshunov A M. Polymer Engineering and Science, 2013, 54, 96. 22 Kargar M, Behravesh A H, Mohammad-Taheri H. Polymer Composites, 2014, 37, 1674. 23 Ma W L. Study on the mechanism and equipment of TPU foaming particles prepared by supercritical carbon dioxide. Master’s Thesis, Qingdao University of Science and Technology, China, 2017 (in Chinese). 马文良. 基于超临界CO2制备TPU发泡颗粒的机理及设备研究. 硕士学位论文, 青岛科技大学, 2017. 24 Peng X F, Liu T, Lan Q G, et al. Materials Reports, 2005, 19(1), 75 (in Chinese). 彭响方, 刘婷, 兰庆贵, 等. 材料导报, 2005, 19(1), 75. 25 Zhao S H, Zhang L Y, Mao L X. Polymer processing engineering, China Light Industry Press, China, 2006, pp. 219 (in Chinese). 赵素合, 张丽叶, 毛立新. 聚合物加工工程, 中国轻工业出版社, 2006, pp. 219. 26 贵州省材料产业技术研究院. 中国专利, CN203622749U, 2014. 27 Yanfeng Automotive Trim Systems Co., Ltd. U. S. patent, US9126358, 2015. 28 宁波高新区卓尔化工科技有限公司. 中国专利, CN113352534A, 2021. 29 鸿安(福建)机械有限公司等. 中国专利, CN113183390A, 2021. 30 Wu S K. The forming board method of compression molding and its theoretical research. Master’s Thesis, Beijing University of Chemical Technology, China, 2016 (in Chinese). 吴申康. 模压发泡板材成型方法及其理论研究. 硕士学位论文, 北京化工大学, 2016. 31 南京工业大学. 中国专利, CN216182148U, 2022. 32 浙江海铂新材料科技有限公司. 中国专利, CN203371718U, 2014. 33 浙江巨络化学有限责任公司. 中国专利, CN205674421U, 2016. 34 广州市欧橡隔热材料有限公司. 中国专利, CN207059046U, 2018. 35 山东大学, 福建鑫瑞新材料科技有限公司. 中国专利, CN112976457A, 2021. 36 北京化工大学. 中国专利, CN103895146A, 2014. 37 Gong W, Zhang C, Yu J, et al. Wuhan University Journal of Natural Sciences, 2014, 19, 123. 38 Pan L Y, Shen Y X, Zhan M S, et al. Polymer Composites, 2008, 31, 43. 39 Wong A, Park C B. Polymer Testing, 2012, 31, 417. 40 Wong A, Guo Y T, Park C B. The Journal of Supercritical Fluids, 2013, 79, 142. 41 Wong A, Guo Y T, Park C B, et al. International Journal of Molecular Sciences, 2015, 16, 9196. 42 Chen J. Investigation of solubility and diffusivity of CO2 in polypropylene composites and their application in the simulation of CO2 foaming injection molding process. Master’s Thesis, East China University of Science and Technology, China, 2013 (in Chinese). 陈洁. CO2在聚丙烯复合材料中溶解和扩散行为及其在注塑发泡模拟中的应用. 硕士学位论文, 华东理工大学, 2013. 43 Deng R, Jiang T H, Zhang C, et al. Polymers, 2021, 13, 1468. 44 Huang Q, Wei K, Xia H D, et al. Thermochimica Acta, 2021, 703, 179014. 45 Tabatabaei A, Barzegari M R, Nofar M, et al. Polymer Testing, 2014, 33, 57. 46 Peng X F, Liu L Y, Chen B Y, et al. Polymer Testing, 2016, 52, 225. 47 Ahmadzai A, Behravesh A H, Sarabi M T, et al. Journal of Cellular Plastics, 2014, 50, 279. 48 Shaayegan V, Mark L H, Tabatabaei A, et al. Express Polymer Letters, 2016, 10, 462. 49 Shaayegan V, Ameli A, Wang S, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88, 67. |
|
|
|