INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Carbon Materials for Wound Hemostasis |
SHI Yihan1, HE Jianlin2, DING Sheng1, YANG Kun1, HOU Kexin1, LI Fan1,*
|
1 Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China 2 No.920 Hospital of Joint Logistics Support Force, Kunming 650032, China |
|
|
Abstract Uncontrollable bleeding is an important cause of death of the wounded at the scene of the war, so it is of great significance to develop materials that can quickly stop bleeding and have certain urgently needed functions (such as antibacterial), which can effectively protect the wounded and reduce mortality. At present, the commonly used organic and inorganic hemostatic materials have certain shortcomings, such as poor environmental adaptability, unstable hemostatic properties and potential toxic and side effects. Carbon materials generally have the characteristics of extensive raw materials, low cost, good biocompatibility and easy surface modification, and have preliminarily shown good development prospects in the application of wound dressings. In this paper, the application of several typical carbon materials including traditional and emerging materials in rapid hemostasis and other wound treatment fields is summarized, and the performance, mechanism of action and related preparation methods of carbon materials as hemostatic agents and wound dressings are summarized. Finally, suggestions and prospects are put forward for the application of carbon materials in wound hemostasis. Carbon materials are expected to be an ideal woundhemostatic dressing in war sites and prehospital care.
|
Published: 10 May 2024
Online: 2024-05-13
|
|
|
|
1 Zhao Y, Hao J, Chen Z, et al. Journal of Materials Chemistry B, 2021, 9(27), 5465. 2 Du X, Wu L, Yan H, et al. Nature Communications, 2021, 12(1), 4733. 3 He H, Zhou W, Gao J,et al. Nature Communications, 2022, 13(1), 552. 4 Fang Y, Xu Y, Wang Z, et al. Chemical Engineering Journal, 2020, 388(5), 124169. 5 Hickman D A, Pawlowski C L, Sekhon U D S,et al. Advanced Materials, 2018, 30(4), 1700859. 6 Gao Y, Sarode A, Kokoroskos N,et al. Science Advances, 2020, 6(31), eaba0588. 7 Zheng C, Liu X, Luo X, et al. Journal of Materials Chemistry B, 2019, 7(46), 7338. 8 Gupta M. Journal of Obstetrics and Gynecology of India, 2020, 70(1), 523. 9 Spotnitz W D. World Journal of Surgery, 2010, 34(4), 632. 10 Spotnitz W D. American Surgeon, 2012, 78(12), 1305. 11 Spotnitz W D, Burks S. Transfusion, 2010, 48(7), 1502. 12 Bennett B L, Littlejohn L. Military Medicine, 2014, 179(5), 497. 13 Chen X, Yan Y, Hong L, et al. Biomaterials Science, 2018, 6(12), 3332. 14 Shi P, Zhou D, Zhu Y, et al. ACS Applied Bio Materials, 2021, 4(1), 1030. 15 Dowling M B, Kumar R, Keibler M A,et al. Biomaterials, 2011, 32(13), 3351. 16 Wei S, Chen F, Geng Z, et al. Journal of Materials Chemistry B, 2020, 8(9), 1897. 17 Liang Y, Xu C, Liu F, et al. ACS Applied Materials & Interfaces, 2019, 11(27), 23848. 18 Guan Z, Guan Z, Li Z,et al. Nanoscale Research Letters, 2019, 14(1), 338. 19 Pramanik P, Patel H, Charola S, et al. Journal of CO2 Utilization, 2021, 45, 101450. 20 Rao C, Biswas K, Subrahmanyam K S, et al. Journal of Materials Che-mistry, 2009, 19(17), 2457. 21 Rozhkov A V, Giavaras G, Bliokh Y P, et al. Physics Reports, 2011, 503(2), 77. 22 Liu L L, Zhang H J, Li S, et al. Applied Mechanics & Materials, 2015, 723, 615. 23 Jiao G, He X, Li X, et al. RSC Advances, 2015, 5(66), 53240. 24 Zhao R, Kong W, Sun M, et al. ACS Applied Materials & Interfaces, 2018, 10(21), 17617. 25 Yadav A, Kumar R, Pandey U P, et al. Carbon, 2021, 173, 350. 26 Lee S Y, Moore R B, Mahajan R L. Carbon, 2021, 171(1-1), 585. 27 Wfka B, Esc D, Wmaer B, et al. International Journal of Biological Macromolecules, 2020, 164, 1370. 28 Qian L, Wang H, Yang J, et al. Membranes, 2020, 10(10), 296. 29 Maleki A, Hajizadeh Z, Abbasi H. Carbon Letters, 2018, 27(1), 42. 30 Rajasekaran M, Ayappa K G. Physical Chemistry Chemical Physics, 2020, 22, 16080. 31 Wenjing A, Du F, He Y, et al. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112891. 32 Lee J, Noh S, Pham N D, et al. Electrochimica Acta, 2019, 313, 1. 33 Cheng C, Jia P, Xiao L, et al. Carbon, 2019, 145, 668. 34 Xu S, Zhang L, Wang B, et al. Cell Reports Physical Science, 2021, 2(3), 100372. 35 Zaaba N I, Foo K L, Hashim U, et al. Procedia Engineering, 2017, 184, 469. 36 Robertson J. Materials Today, 2004, 7(10), 46. 37 Kang S, Han H S, Mhin S, et al. Applied Surface Science, 2021, 547(2), 149197. 38 Lu C, Su F. Separation & Purification Technology, 2007, 58(1), 113. 39 Hart A, Owuor P S, Hamel J T, et al. Carbon, 2020, 164(13), 143. 40 Hussein M Z. Polymers, 2021, 13(9), 1362. 41 Lu N, Sui Y, Ding Y, et al. Chemico-Biological Interactions, 2018, 295, 64. 42 Medvecky L, Giretova M, Kralikova R, et al. Journal of Materials Science Materials in Medicine, 2019, 30(5), 54. 43 Yan X, Yang W, Shao Z, et al. Journal of Biomedical Materials Research Part A, 2016, 105(2), 443. 44 Koh L B, Rodriguez I, Venkatraman S S. Acta Biomaterialia, 2009, 5(9), 3411. 45 Kotzabasaki M, Sotiropoulos I, Charitidis C, et al. Nanoscale Advances, 2021, 3, 3167. 46 De Paoli Lacerda S H, Semberova J, Holada K, et al. ACS Nano, 2011, 5(7), 5808. 47 Mostafavi E, Iravani S, Varma R S, et al. Materials Advances, 2022, 3, 4765. 48 Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14), 1620. 49 Ai G, Kang Y F, Yin X B. New Journal of Chemistry, 2017, 41(9), 3422. 50 Qiao Z A, Wang Y, Gao Y, et al. Chemical Communications, 2009, 46(46), 8812. 51 Geng B, Yang D, Pan D, et al. Carbon, 2018, 134, 153. 52 Shakiba-Marani R, Ehtesabi H. International Journal of Biological Macromolecules, 2023, 224, 831. 53 Sun Y, Zhang M, Bhandari B, et al. Food Reviews International, 2022, 38(7), 1513. 54 Travlou N A, Ginnakoudakis D A, Algarra M, et al. Carbon, 2018, 135, 104. 55 Mahat N A, Shamsudin S A, Jullok N, et al. Desalination, 2020, 493, 114618. 56 Yoon C, Yang K P, Kim J, et al. Chemical Engineering Journal, 2019, 382, 122792. 57 Stankovic N, Bodik M, Siffalovic P, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 4154. 58 Zhang Z, Yi G, Li P, et al. Nanoscale, 2020, 12(40), 13899. 59 Liu M L, Chen B B, Li C M, et al. Green Chemistry, 2019, 21(3), 449. 60 Sharma A, Kundu M, Ghosh N, et al. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102861. 61 Xu J, Zhou Y, Liu S, et al. Analytical Methods, 2014, 6(7), 2086. 62 Zhe Z, Hao J, Jing Z, et al. RSC Advances, 2012, 2(23), 8599. 63 Li S, Guo Z, Zhang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(34), 19153. 64 Lu S Y, Jin M, Zhang Y, et al. Advanced Energy Materials, 2018, 8(11), 1702545. 65 Li J, Zhang L, Wang T, et al. Journal of Environmental Sciences, 2021, 99, 119. 66 Kim K, Kim M P, Lee W G. New Journal of Chemistry, 2017, 41(17), 8864. 67 Han F, Zhang M, Liu Z, et al. Chemosphere, 2022, 292, 133507.1. 68 Wong K T, Eu N C, Ibrahim S, et al. Journal of Cleaner Production, 2016, 115, 337. 69 Ogawa M, Bardant T B, Sasaki Y, et al. Bioresources, 2011, 7(1), 236. 70 Hanigan D, Zhang J, Herckes P, et al. Environmental Science & Techno-logy, 2012, 46(22), 12630. 71 Diez N, Diaz P, Alvarez P, et al. Materials Letters, 2014, 136, 214. 72 Fu J, Zhang J, Jin C, et al. Bioresource Technology, 2020, 310(11), 123413. 73 Hassan M F, Sabri M A, Fazal H, et al. Journal of Analytical & Applied Pyrolysis, 2020, 145, 104715.1. 74 Singh S K, Singh M K, Nayak M K, et al. ACS Nano, 2011, 5(6), 4987. 75 Kumari S, Singh M K, Singh S K, et al. Nanomedicine, 2014, 9(3), 427. 76 Siess W. Physiological Reviews, 1989, 69(1), 58. 77 Howe N, Cherpelis B. Journal of the American Academy of Dermatology, 2013, 69(5), 659.e1. 78 Gu R, Sun W, Hong Z, et al. Biomaterials, 2010, 31(6), 1270. 79 Liao K H, Lin Y S, Macosko C W, et al. ACS Applied Materials & Interfaces, 2011, 3(7), 2607. 80 Chen J, Lu L, Ying L, et al. International Journal of Biological Macromolecules, 2019, 130, 827. 81 Duch M C, Budinger G R S, Liang Y T, et al. Nano Letters, 2011, 11(12), 5201. 82 Laura J C, Franklin K, Huang J. Journal of the American Chemical Society, 2009, 132(23), 8180. 83 Fan L, Ge H, Zou S, et al. International Journal of Biological Macromo-lecules, 2016, 93, 582. 84 Quan K, Li G, Tao L, et al. ACS Applied Materials & Interfaces, 2016, 8(12), 7666. 85 Qiu Y, Dong Y, Zhao S, et al. Journal of Applied Polymer Science, 2021, 138(24), 50572. 86 Ruan J, Wang X, Yu Z, et al. Advanced Functional Materials, 2016, 26(7), 1085. 87 Zhang Y, Guan J, Wu J, et al. Carbohydrate Polymers, 2019, 219, 405. 88 Zhang M, Wang D, Ji N, et al. Polymers, 2021, 13(16), 2812. 89 Li G, Liang Y, Xu C, et al. Colloids and Surfaces B: Biointerfaces, 2018, 174, 35. 90 Lee D Y, Khatun Z, Lee J H, et al. Biomacromolecules, 2011, 12(2), 336. 91 Chen J, Lu L, Ying L, et al. International Journal of Biological Macromolecules, 2019, 130, 827. 92 Gaffney A M, Santos-Martinez M J, Satti A, et al. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(1), 39. 93 Teixeira-Santos R, Gomes M, Gomes L C, et al. iScience, 2020, 24(1), 102001. 94 Fent J, Bihari P, Vippola M, et al. Toxicology in Vitro, 2015, 29(5), 1132. 95 Ishii H, Endo H, Tsuchiya H, et al. General Thoracic and Cardiovascular Surgery, 2018, 66(12), 753. 96 Macdonald M H, Tasse L, Wang D, et al. Journal of Investigative Surgery, 2020, 34(3), 1. 97 Hutchinson R W, George K, Johns D, et al. Cellulose, 2013, 20(1), 537. 98 Cheng W, Li H, Zheng X, et al. Physical Chemistry Chemical Physics, 2016, 18(42), 29183. 22090162-1299 Chakoli A N, He J, Cheng W, et al. RSC Advances, 2014, 4(94), 52372. 100 Zhang B. Journal of Nanoscience and Nanotechnology, 2018, 19(11), 7410. 101 Zhang W, Zhao L, Gao C, et al. Journal of Materials Chemistry B, 2021, 9(47), 9754. 102 Luyts K, Smulders S, Napierska D, et al. Particle & Fibre Toxicology, 2014, 11(1), 61. 103 Picheth G F, Pirich C L, Sierakowski M R, et al. International Journal of Biological Macromolecules, 2017, 104, 97. 104 Khalid A, Madni A, Raza B, et al. International Journal of Biological Macromolecules, 2022, 203, 256. 105 Li S.Preparation of fluorescent carbon dots and study on their blood compatibility. Master's Thesis, Jinan University, China, 2016(in Chinese). 李莎. 荧光碳点的制备及其血液相容性研究. 硕士学位论文, 暨南大学, 2016. 106 Luo J, Zhang M, Cheng J, et al. RSC Advances, 2018, 8(66), 37707. 107 Tian R, Guo Y, Luo F, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 438, 114531. 108 Rezaei A, Ehtesabi H. Matreials Today Chemistry, 2022, 24, 100910. 109 Yan X, Zhao Y, Luo J, et al. Journal of Nanobiotechnology, 2017, 15(1), 60. 110 Jian H J, Wu R S, Lin T Y, et al. ACS Nano, 2017, 11(7), 6703. 111 Li Y, Ma W, Sun J, et al. Carbon, 2019, 159, 149. 112 Roxana J, Alexandre B, Julie B, et al. Colloids & Surfaces B Biointerfa-ces, 2018, 170, 347. 113 Zhao C, Wu L, Wang X, et al. Carbon, 2020, 163(14), 70. 114 Bankoti K, Rameshbabu A P, Datta S, et al. Journal of Materials Che-mistry B, 2017, 5(32), 6579. 115 Yang J, Gao G, Zhang X, et al. Carbon, 2019, 146, 827. 116 Li P, Liu S, Yang X, et al. Chemical Engineering Journal, 2020, 403, 126387. 117 Liu Y, Xu B, Lu M, et al. Bioactive Materials, 2021, 12, 246. 118 Kasouni A I, Chatzimitakos T G, Troganis A N, et al. Materials Today Communications, 2021, 26, 102019. 119 Kim M H, Cho D, Kwon O H, et al. Journal of Alloys and Compounds, 2017, 735, 2670. 120 Chakravarthi A, Srinivas C R, Mathew A C. Indian Journal of Dermato-logy Venereology & Leprology, 2008, 74(2), 122. 121 Du X N, Niu Z, Zhou G Z, et al. Biomaterials Artificial Cells & Artificial Organs, 1987, 15(1), 229. 122 Yushin G, Hoffman E N, Barsoum M W, et al. Biomaterials, 2006, 27(34), 5755. 123 Israel O. African Journal of Pure & Applied Chemistry, 2009, 3(1), 6. 124 Kaviyashri Y, Mari S S, Arunachalam T, et al. Materials Today: Proceedings, 2021, 47(4), 321. 125 Huang W Y, Yeh C L, Lin J H, et al. Journal of Materials Science Materials in Medicine, 2012, 23(6), 1465. 126 Lin Y H, Lin J H, Wang S H, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100(8), 2288. 127 Lin Y H, Hsu W S, Chung W Y, et al. Journal of Materials Science Materials in Medicine, 2014, 25(5), 1375. 128 Yang X, Liu W, Li N, et al. Biomaterials Science, 2017, 5(12), 2357. 129 Dai M, Li M, Gong J, et al. Materials & Design, 2022, 216, 110577. 130 Anselmo A C, Modery-Pawlowski C L, Menegatti S, et al. ACS Nano, 2014, 8(11), 11243. 131 Hong C, Alser O, Gebran A, et al. ACS Nano, 2022, 16(2), 2494. 132 Xi G, Liu W, Chen M, et al. ACS Applied Materials & Interfaces, 2019, 11(50), 46558. 133 Modery-Pawlowski C L, Tian L L, Pan V, et al. Biomaterials, 2013, 34(2), 526. 134 Toy R, Hayden E, Shoup C, et al. Nanotechnology, 2011, 22(11), 115101. 135 Pillai J D, Dunn S S, Napier M E, et al. Iubmb Life, 2011, 63(8), 596. 136 He Y, Xu J, Sun X, et al. Theranostics, 2019, 9(9), 2489. 137 Kumar P, Lakshmanan V K, Biswas R, et al. Journal of Biomedical Nanotechnology, 2012, 8(6), 891. 138 Hao S, Nor Y A, Yu M, et al. Journal of the American Chemical Society, 2016, 138(20), 6455. 139 Yue Q, Zhang Y, Jiang Y, et al. Journal of the American Chemical So-ciety, 2017, 139(13), 4954. |
|
|
|