POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Preparation, Stability and Thermophysical Properties of Nanofluid |
JIANG Weixue1,2,,*, TANG Xinyu1,, SONG Jinwei1, XU Zuo1, ZHANG Yuan1
|
1 School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225100, Jiangsu, China 2 State Key Laboratory of Green Building in Western China, Xi’an 710055, China |
|
|
Abstract As a new type of solid-liquid two-phase fluid, nanofluid has been gradually recognized for its advantages in thermophysical properties such as thermal conductivity and surface tension compared with base fluid. Due to the high surface activity of nanoparticles and the high attraction between nanoparticles, nanoparticles are prone to agglomeration and sedimentation, which will weaken the thermophysical property advantages of nanofluid and thus affect the heat transfer efficiency. Therefore, the preparation of nanofluid with excellent thermal properties and strong stability has become the premise of its large-scale applications. To this end, the preparation, stability and thermophysical properties of nanofluid are summarized and analyzed in this paper. Also, the technical characteristics of promoting the dispersion stability of nanoparticles by magnetic stirring, adjusting the pH of the base fluid, ultrasonic dispersion technology, particle surface modification technology and adding surfactant are summarized. By analyzing the influence of various parameters on the thermophysical properties of nanofluid, the effective research direction to solve the problem of particle agglomeration and precipitation is pointed out, to finally meet the needs of the practical application of nanofluid.
|
Published: 25 February 2024
Online: 2024-03-01
|
|
Fund:Opening Fund of State Key Laboratory of Green Building in Western China (LSKF202319). |
|
|
1 Jang S P, Choi S U S. Applied Physics Letters, 2004, 84(21),4316. 2 Okonkwo E C, Wole-Osho I, Almanassra I W, et al. Journal of Thermal Analysis and Calorimetry, 2021, 145(6), 2817. 3 Yang L, Ji W, Zhang Z, et al. International Communications in Heat and Mass Transfer, 2019, 109, 104353. 4 Jiang W, Du K, Li Y, et al. International Journal of Refrigeration, 2017, 82, 189. 5 Song J, Jiang W, Qian H, et al. Powder Technology, 2020, 369, 311. 6 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392. 7 Zafarani-Moattar M T, Majdan-Cegincara R. Fluid Phase Equilibria, 2013, 354, 102. 8 Choi M, Choi W K, Jung C H, et al. Scientific Reports, 2020, 10(1), 1. 9 Hashimoto S, Kurazono K, Yamauchi T. International Journal of Heat and Mass Transfer, 2020, 150, 119302. 10 Sati P, Shende R C, Ramaprabhu S. Thermochimica Acta, 2018, 666, 75. 11 Suganthi K S, Vinodhan V L, Rajan K S. Applied Energy, 2014, 135, 548. 12 Huang X G. Experimental study on boiling heat transfer of nanofluid, Master’s Thesis, Jiangsu University of Science and Technology, China, 2017 (in Chinese). 黄晓干. 纳米流体沸腾换热实验研究. 硕士学位论文, 江苏科技大学, 2017 13 Minakov A V, Rudyak V Y, Pryazhnikov M I. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 279. 14 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248. 15 Barreneche C, Mondragon R, Ventura-Espinosa D, et al. Applied Thermal Engineering, 2018, 128, 121. 16 Liu C, Yan Y, Sun W, et al. Journal of Molecular Liquids, 2022, 356, 119020. 17 Zhu H T, Lin Y S, Yin Y S. Journal of Colloid & Interface Science, 2004, 277(1), 100. 18 Bönnemann H, Botha S S, Bladergroen B, et al. Applied Organometallic Chemistry, 2010, 19(6), 768. 19 Lee G J, Kim C K, Lee M K, et al. Thermochimica Acta, 2012, 542, 24. 20 Mohammadpoor M, Sabbaghi S, Zerafat M M, et al. International Journal of Refrigeration, 2019, 99, 243. 21 Ma B, Shin D, Banerjee D. Journal of Energy Storage, 2021, 35, 102278. 22 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741. 23 Wang X Q, Mujumdar A S. Brazilian Journal of Chemical Engineering, 2008, 25(4), 631. 24 Asadi A, Alarifi I M, Ali V, et al. Ultrasonics Sonochemistry, 2019, 58, 104639. 25 Chen W, Zou C, Li X. Solar Energy Materials and Solar Cells, 2019, 200, 109931. 26 Yang L, Huang J, Ji W, et al. Powder Technology, 2020, 360, 956. 27 Missana T, Adell A. Journal of Colloid and Interface Science, 2000, 230(1), 150. 28 Popa I, Gillies G, Papastavrou G, et al. The Journal of Physical Chemistry B, 2010, 114(9), 3170. 29 Dey D, Kumar P, Samantaray S. Heat Transfer—Asian Research, 2017, 46(8), 1413. 30 Zhou L, Ma H H, Ma S X, et al. Materials Reports, 2018, 32(15), 2576(in Chinese). 周璐, 马红和, 马素霞, 等. 材料导报, 2018, 32(15), 2576. 31 Paul G, Philip J, Raj B, et al. International Journal of Heat & Mass Transfer, 2011, 54(15-16), 3783. 32 Botha S S, Ndungu P, Bladergroen B J. Industrial & Engineering Che-mistry Research, 2011, 50(6), 3071. 33 Cacua K, Murshed S M, Pabón E, et al. Journal of Thermal Analysis and Calorimetry, 2020, 140(1), 109. 34 Chung S J, Leonard J P, Nettleship I, et al. Powder Technology, 2009, 194(1-2), 75. 35 Hafizi A, Rajabzadeh M, Khalifeh R. Journal of Environmental Chemical Engineering, 2020, 8(4), 103845. 36 Li F, Li L, Zhong G, et al. International Journal of Heat and Mass Transfer, 2019, 129, 278. 37 Zheng N, Wang L, Sun Z. Ultrasonics Sonochemistry, 2021, 80, 105816. 38 Tajik B, Abbassi A, Saffar-Avval M, et al. Powder Technology, 2012, 217, 171. 39 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748. 40 Li D, Dai Y, Chen X, et al. Journal of Molecular Liquids, 2022, 354, 118848. 41 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55. 42 Zareei M, Yoozbashizadeh H, Madaah Hosseini H R. Journal of Thermal Analysis and Calorimetry, 2019, 135(2), 1185. 43 Katiyar A, Harikrishnan A R, Dhar P. Colloid and Polymer Science, 2017, 295(9), 1575. 44 Cacua K, Ordoñez F, Zapata C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123960. 45 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392. 46 Assael M J, Metaxa I N, Arvanitidis J, et al. International Journal of Thermophysics, 2005, 26(3), 647. 47 Saterlie M, Sahin H, Kavlicoglu B, et al. Nanoscale Research Letters, 2011, 6(1), 1. 48 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10. 49 Kashiwagi T. Newsletter IEA Heat Pupm Center, 1988, 6(4), 2. 50 Das P K, Islam N, Santra A K, et al. Journal of Molecular Liquids, 2017, 237, 304. 51 Li X, Chen Y, Mo S P, et al. Journal of Chemical Industry, 2013, 64(9), 3324 (in Chinese). 李兴, 陈颖, 莫松平, 等. 化工学报, 2013, 64(9), 3324. 52 Gao T, Li C, Zhang Y, et al. Tribology International, 2019, 131, 51. 53 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741. 54 Yang L, Jiang W, Chen X, et al. International Journal of Refrigeration, 2017, 82, 366. 55 Yang Z, Yao Y P, Li Y, et al. Journal of Chemical Industry, 2022, 73(3), 1093 (in Chinese). 杨振, 姚元鹏, 李昀, 等. 化工学报, 2022, 73(3), 1093. 56 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248. 57 Michael M, Zagabathuni A, Ghosh S, et al. Journal of Thermal Analysis and Calorimetry, 2019, 137(2), 369. 58 Zhu N, Ji H, Yu P, et al. Nanomaterials, 2018, 8(10), 810. 59 Jouyandeh M, Karami Z, Ali J A, et al. Progress in Organic Coatings, 2019, 136, 105250. 60 Kora M, Ani Z, Tasi M, et al. Journal of the Serbian Chemical So-ciety, 2007, 72(11), 1115. 61 Li X, Xiong J, Xu Y, et al. Chinese Journal of Catalysis, 2019, 40(3), 424. 62 Sundar L S, Singh M K, Ramana E V, et al. Scientific Reports, 2014, 4(1), 1. 63 Zhai Y, Li L, Wang J, et al. Powder Technology, 2019, 343, 215. 64 Angayarkanni S A, Philip J. Journal of Nanofluids, 2014, 3(1), 17. 65 Elomaa O, Oksanen J, Hakala T J, et al. Tribology International, 2014, 71, 62. 66 Huminic A, Huminic G, Fleaca C, et al. Powder Technology, 2015, 284, 78. 67 Haghtalab A, Mohammadi M, Fakhroueian Z. Fluid Phase Equilibria, 2015, 392, 33. 68 Raki E, Afrand M, Abdollahi A. International Journal of Heat and Mass Transfer, 2021, 165, 120669. 69 Pang C, Jung J Y, Lee J W, et al. International Journal of Heat and Mass Transfer, 2012, 55(21-22), 5597. 70 Ghadimi A, Metselaar I H. Experimental Thermal and Fluid Science, 2013, 51, 1. 71 Etedali S, Afrand M, Abdollahi A. International Journal of Thermal Sciences, 2019, 145, 105977. 72 Suganthi K S, Rajan K S. International Journal of Heat and Mass Transfer, 2012, 55(25-26), 7969. 73 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55. 74 Jiang W, Ding G, Peng H, et al. Current Applied Physics, 2010, 10(3), 934. 75 Hong J, Kim D. Thermochimica Acta, 2012, 542, 28. 76 Bao L, Zhong C, Jie P, et al. Advances in Mechanical Engineering, 2019, 11(11), 1687814019889486. 77 Song S L, Lee J H, Chang S H. Experimental Thermal and Fluid Science, 2014, 52, 12. 78 Ham J, Kim H, Shin Y, et al. International Journal of Thermal Sciences, 2017, 114, 86. 79 Liu C D, Wang D M, Quan X J, et al. Journal of Power Engineering, 2018, 38(7), 572 (in Chinese). 刘藏丹, 王东民, 全晓军, 等. 动力工程学报, 2018, 38(7), 572. 80 Barewar S D, Tawri S, Chougule S S. Journal of Thermal Analysis and Calorimetry, 2020, 139(3), 1779. 81 Zhang J Y, Liu S, Sun W N, et al. Materials Reports, 2016, 30(S2), 160 (in Chinese). 张景胤, 刘石, 孙伟娜, 等. 材料导报, 2016, 30(S2), 160. 82 Teng T P, Hung Y H, Teng T C, et al. Applied Thermal Engineering, 2010, 30(14-15), 2213. 83 Cui W, Bai M, Lv J, et al. Industrial & Engineering Chemistry Research, 2011, 50(23), 13568. 84 Bhanushali S, Jason N N, Ghosh P, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18925. 85 Rashmi W, Ismail A F, Sopyan I, et al. Journal of Experimental Nanoscience, 2011, 6(6), 567. 86 Altun A, Şara O N, Şimşek B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127099. 87 Nawi M R M, Rehim M Z A, Azmi W H, et al. International Journal of Refrigeration, 2018, 88, 275. 88 Nguyen C T, Desgranges F, Galanis N, et al. International Journal of Thermal Sciences, 2008, 47(2), 103. 89 Yu L, Bian Y N, Liu Y, et al. Materials Reports, 2020, 34(22), 22010 (in Chinese). 于丽, 卞永宁, 刘杨, 等. 材料导报, 2020, 34(22), 22010. 90 Kedzierski M A, Brignoli R, Quine K T, et al. International Journal of Refrigeration, 2017, 74, 3. 91 Lu G, Duan Y Y, Wang X D. Journal of Nanoparticle Research, 2014, 16(9), 1. 92 Jeong J, Li C, Kwon Y, et al. International Journal of Refrigeration, 2013, 36(8), 2233. 93 Xuan Y, Li Q, Tie P. Experimental Thermal and Fluid Science, 2013, 46, 259. 94 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10. 95 Cabaleiro D, Estellé P, Navas H, et al. Journal of Nanofluids, 2018, 7(6), 1081. 96 Harikrishnan A R, Dhar P, Agnihotri P K, et al. The European Physical Journal E, 2017, 40(5), 1. 97 Wang G, Dong P, Lu Y, et al. International Communications in Heat and Mass Transfer, 2021, 123, 105231. 98 Kumar R, Milanova D. Applied Physics Letters, 2009, 94(7), 073107. 99 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10. |
|
|
|