POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Analysis of Flexural Performance and Failure of Glass Fiber Reinforced Methacrylate-based Ultraviolet Cured-in-Place Pipe Materials |
XIA Yangyang1,2,3, FANG Hongyuan1,2,3, ZHANG Chao1,2,3,*, WANG Cuixia1,2,3, SHI Mingsheng1,2,3
|
1 School of Water Conservancy and Transportation/Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China 2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China 3 Collaborative Innovation Center for Disaster Prevention and Control of Underground Engineering Jointly Built by Provinces and Ministries, Zhengzhou 450001, China |
|
|
Abstract Ultraviolet curable in-place pipe (UV-CIPP) is a glass fiber composite material. Its flexural performance is an important reference index necessary to evaluate the effectiveness of pipeline rehabilitation and material optimization design. The flexural performance and failure mechanism of glass fiber-reinforced methacrylate-based UV-CIPP materials were investigated based on a three-point bending test that incorporated HD video and SEM observations, and accounted for the effects of curing time, curing distance, UV lamp power, and material thickness. Failure of glass fiber-reinforced methacrylate-based UV-CIPP materials was divided into three stages:elastic deformation, matrix cracking, and glass fiber fracture. Matrix cracking, debonding delamination, and fiber pull-out fracture caused bending failures in this material. Under the influence of a single variable, the flexural strength and flexural modulus of UV-CIPP materials firstly increased and then decreased with additional curing time, curing distance, and UV lamp power, but gradually decreased with increased material thickness. This study provides a reference basis for optimal UV-CIPP material design while laying an important foundation to develop of domestic UV-CIPP materials.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (52178368, 51909242, 52009125), the Program for Science and Technology Innovation Teams and Talents in Universities of Henan Province (23IRTSTHN004, 23HASTIT007), the China Postdoctoral Science Foundation (2021T140619, 2021M692939), the Key Project of Natural Science Foundation of Henan Province (232300421137), the Postdoctoral Research Project Startup Grant in Henan Province (202001016), and the First-class Project Special Funding of Yellow River Laboratory (Zhengzhou University) (YRL22LT07). |
|
|
1 Zhang X J, Fang H Y, Hu Q F, et al. Tunnelling and Underground Space Technology, 2022, 120, 104266. 2 Xiang W G, Ma B S, Zhao Y H. China Water & Wastewater, 2020, 36(20), 1(in Chinese). 向维刚, 马保松, 赵雅宏. 中国给水排水, 2020, 36(20), 1. 3 Liao B Y. Study on UV-CIPP repair technology of drainage pipeline. Ph. D. Thesis, China University of Geosciences, China, 2018 (in Chinese). 廖宝勇. 排水管道UV-CIPP非开挖修复技术研究. 博士学位论文, 中国地质大学, 2018. 4 ASTM International. Standard Practice for rehabilitation of existing pipelines and conduits by pulled-in-place installation of cured-in-place thermosetting resin pipe (CIPP), ASTM F 1743-17. West Conshohocken, PA:ASTM International, 2017, pp. 1. 5 China Association for Construction Standardization. Specification for water and drainage pipeline rehabilitation using cured-in-place-pipe method:T/CECS 559-2018. Beijing:China Planning Press, 2018, pp.20(in Chinese). 中国工程建设标准化协会. 给排水管道原位固化法修复工程技术规程:T/CECS 559-2018. 北京:中国计划出版社, 2018, pp. 20. 6 Zhao Y H, Zeng Z, Ma B S. Special Structures, 2019, 36(1), 108(in Chinese). 赵雅宏, 曾正, 马保松. 特种结构, 2019, 36(1), 108. 7 Brown M J P, Moore I D, Fam A. Tunnelling and Underground Space Technology, 2014, 42, 87. 8 Shou K J, Chen B C. Tunnelling and Underground Space Technology, 2018, 71, 544. 9 Fang H Y, Yang K J, Li B, et al. Mathematical Problems in Enginee-ring, 2020, 2020, 1. 10 Yang K J, Xue B H, Fang H Y, et al. Structures, 2021, 29, 484. 11 Yang K J, Fang H Y, Bu J L, et al. Tunnelling and Underground Space Technology, 2021, 117, 104153. 12 Hsu J, Shou K. Tunnelling and Underground Space Technology, 2022, 125, 104520. 13 Alam S, Sterling R L, Allouche E, et al. Tunnelling and Underground Space Technology, 2015, 50, 451. 14 Ji H, Yoo S, Kim J, et al. Water, 2018, 10(8), 983. 15 Ji H W, Koo D D, Kang J. International Journal of Environmental Research and Public Health, 2020, 17(6), 2073. 16 Hodul J, Majerova J, Drochytka R, et al. Materials, 2020, 13(14), 3051. 17 Nuruddin M, Decocker K, Sendesi S M T, et al. Journal of Composite Materials, 2020, 54(23), 3365. 18 Al-zain A O, Marghalani H Y. Operative Dentistry, 2020, 45(3), 297. 19 Al-zain A O, Platt J A. Dental Materials Journal, 2021, 40(1), 202. 20 Zhu P. Research on UV-curing resin toughening and composite molding process. Master's Thesis, National University of Defense Technology, China, 2016 (in Chinese). 朱璞. 紫外光固化树脂增韧及其复合材料光固化成型研究. 硕士学位论文, 国防科学技术大学, 2016. 21 Dong J W, Luo S L, Ning S P, et al. ACS Applied Materials & Interfaces, 2021, 13(50), 60478. 22 Mortell D J, Tanner D A, Mccarthy C T. Composite Structures, 2016, 149, 33. 23 Wen L W, Yu K, Feng Q Q, et al. Materials Reports, 2020, 34(22), 22162(in Chinese). 文立伟, 余坤, 封桥桥, 等. 材料导报, 2020, 34(22), 22162. 24 Li X B, Jiang G M, Wang Q, et al. The Chinese Journal of Nonferrous Metals, 2021, 31 (8), 2125(in Chinese). 李小兵, 蒋国民, 王强, 等. 中国有色金属学报, 2021, 31(8), 2125. 25 Deng Y F, Cai X F, Li X, et al. Acta Materiae Compositae Sinica, 2021, 38(9), 2862(in Chinese). 邓云飞, 蔡雄峰, 李想, 等. 复合材料学报. 2021, 38(9), 2862. 26 Hu C, Sang L, Jiang K, et al. Composite Structures, 2022, 281, 115036. 27 ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM-790-2017. West Conshohocken, PA:ASTM International, 2017, pp.1. 28 Wu J L, Xiang X L, Huang Y F, et al. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6), 161(in Chinese). 吴进良, 向兴隆, 黄一凡, 等. 重庆理工大学学报(自然科学), 2023, 37(6), 161. 29 Fan W, Dang W, Liu T, et al. Materials & Design, 2019, 183, 108112. 30 Harizi W, Chaki S, Bourse G, et al. Composite Structures, 2022, 289, 115470. 31 Spencer R, Alwekar S, Jo E, et al. Composites Part B:Engineering, 2022, 234, 109713. 32 Feng P, Wu Y W, Liu T Q. Composites Part B:Engineering, 2022, 231, 109543. |
|
|
|