INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Progress in the Use of Optoelectronic Memristors for Synaptic Bionics |
LIU Jing, ZHANG Jian, ZHAO Bo*
|
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China |
|
|
Abstract The traditional computing model has been unable to meet the needs of big data processing in the era of information explosion. Therefore, neuromorphic computing based on neural networks is widely used in artificial intelligence research to address those needs. With the advancements in integration technology, there has been an increased focus on the development of new hardware systems. The memristor, which is the fourth fundamental circuit element in addition to capacitors, inductors, and resistors, combines the benefits of optoelectronics, semiconductor science, and other fields, and can present novel opportunities for the hardware used in the field of neuromorphic computing. In this paper, the fundamental concepts of optoelectronic memristors and functions of biological synapses, including pulse-time-dependent plasticity, are presented. In addition, four categories of optoelectronic and fully optical memristors are studied. Subsequently, the brain-like properties of optoelectronic memristors are discussed, including associative learning, non-associative learning, and experiential learning. Associative learning simulates Pavlov’s classic experiment and taste aversion, while non-associative learning comprises habituation and sensitization. Moreover, image memorization, image processing, and pattern recognition based on memristor devices have been realized using artificial neural networks. Finally, the challenges and prospects for synaptic bionics and neuromorphic computing are summarized.
|
Published: 25 February 2024
Online: 2024-03-01
|
|
Fund:Xuzhou Basic Research Project (KC22007). |
|
|
1 Qiu C Y, Li L, Zhang H, et al. Computer Science, 2018, 45(11A), 71(in Chinese). 邱赐云, 李礼, 张欢, 等. 计算机科学, 2018, 45(11A), 71. 2 Wu J Q, Lai F. Microelectronics, 2020, 50(3), 384(in Chinese). 武俊齐, 赖凡. 微电子学, 2020, 50(3), 384. 3 Qin S, Wang F, Liu Y, et al. 2D Materials, 2017, 4(3), 035022. 4 Zhou X G. Research of memelements in metal oxide/graphene composite film. Master’s Thesis, Shanghai Normal University, China, 2021(in Chinese). 周心葛. 金属氧化物/石墨烯复合薄膜在记忆元件中的应用研究. 硕士学位论文, 上海师范大学, 2021. 5 Qin S, Liu Y, Wang X, et al. In: Lasers & Electro-optics. San Jose CA, USA, 2016, pp. SW1R. 4. 6 Zhang Z C, Li Y, Wang J J, et al. Nano Research, 2021, 14(12), 4591. 7 Liu Y C, Lin Y, Wang Z Q, et al. Acta Physica Sinica, 2019, 68(16), 168504(in Chinese). 刘益春, 林亚, 王中强, 等. 物理学报, 2019, 68(16), 168504. 8 Chen Y. Construction of memristive devices based on tungsten oxide/silver composite films and research on synaptic bionics. Master’s Thesis, Northeast Normal University, China, 2021(in Chinese). 陈颖. 基于氧化钨/银复合薄膜的忆阻器件构筑及其神经突触仿生研究. 硕士学位论文, 东北师范大学, 2021. 9 Cho S W, Jo C, Kim Y H, et al. Nano-micro Letters, 2022, 14(1), 203. 10 Hu D C, Yang R, Jiang L, et al. ACS Applied Materials & Interfaces, 2018, 10(7), 6463. 11 Zhu X, Lu W D. ACS Nano, 2018, 12(2), 1242. 12 Maier P, Hartmann F, Rebello S D M, et al. Applied Physics Letters, 2016, 109(2), 023501. 13 Jaafar A H, Kemp N T. Carbon, 2019, 153, 81. 14 Ham S, Choi S, Cho H, et al. Advanced Functional Materials, 2019, 29(5), 1806646. 15 Zhong W M, Tang X G, Liu Q X, et al. Materials & Design, 2022, 222, 111046. 16 Hu L, Yang J, Wang J, et al. Advanced Functional Materials, 2021, 31(4), 2005582. 17 Shan X, Zhao C, Wang X, et al. Advanced Science, 2022, 9(6), 2104632. 18 Yang J, Hu L, Shen L, et al. Fundamental Research, 2024, 4(1), 158. 19 Li H, Jiang X, Ye W, et al. Nano Energy, 2019, 65, 104000. 20 Ahmed T, Kuriakose S, Mayes E, et al. Small, 2019, 15(22), 1900966. 21 John R A, Liu F, Chien N A, et al. Advanced Materials, 2018, 30(25), 1800220. 22 Liu L. Study on the resistive switching and the application of artificial synapse of HfO2/BiFeO3 and two-dimensional TiS3 memristors. Master’s Thesis, Hubei University, China, 2021(in Chinese). 刘磊. 基于HfO2/BiFeO3及二维TiS3忆阻器的阻变特性及突触仿生研究. 硕士学位论文, 湖北大学, 2021. 23 Hou Y X, Li Y, Zhang Z C, et al. ACS Nano, 2021, 15(1), 1497. 24 Yin L, Han C, Zhang Q, et al. Nano Energy, 2019, 63, 103859. 25 He H K, Yang R, Zhou W, et al. Small, 2018, 14(15), 1800079. 26 Kumar M, Kim H S, Kim J. Advanced Materials, 2019, 31(19), 1900021. 27 Zhou L, Zhang S R, Yang J Q, et al. Nanoscale, 2020, 12(3), 1484. 28 Gong G, Gao S, Xie Z, et al. Nanoscale, 2021, 13(2), 1029. 29 Zhao B, Xiao M, Shen D, et al. Nanotechnology, 2020, 31(12), 125201. 30 Li D, Li C, Ilyas N, et al. Advanced Intelligent Systems, 2020, 2(11), 2000107. 31 Li L, Wang X L, Pei J, et al. Science China Materials, 2021, 64(5), 1219. 32 Han X, Xu Z, Wu W, et al. Small Structures, 2020, 1(3), 2000029. 33 Chen S, Lou Z, Chen D, et al. Advanced Materials, 2018, 30(7), 1705400. 34 Sun F, Lu Q, Liu L, et al. Advanced Materials Technologies, 2019, 5(1), 1900888. 35 Liang J B. Preparation of graphene oxide-based composite memristive materials and research on its photoelectric memristive characteristics. Master’s Thesis, Northeast Normal University, China, 2021(in Chinese). 梁佳冰. 氧化石墨烯基复合忆阻材料的制备及其光电忆阻特性研究. 硕士学位论文, 东北师范大学, 2021. 36 Zhou F, Zhou Z, Chen J, et al. Nature Nanotechnology, 2019, 14(8), 776. 37 Shen C, Gao X, Chen C, et al. Nanotechnology, 2022, 33(6), 065205. 38 Seo S, Jo S H, Kim S, et al. Nature Communications, 2018, 9(1), 5106. |
|
|
|