INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
MoS2/Ni3S2/NF Bifunctional Electrocatalysts for Efficient Overall Water Splitting |
JIA Feihong, WEI Xueling, BAO Weiwei, ZOU Xiangyu*
|
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China |
|
|
Abstract By adjusting the hydrothermal reaction time, the nickel foam(NF) self-supporting MoS2/Ni3S2/NF heterostructure array was synthesized by one-step hydrothermal method. The phase analysis and morphology characterization of MoS2/Ni3S2/NF electrocatalysts were analyzed by XRD, XPS, SEM and EDS. The electrocatalytic hydrogen evolution reaction(HER) and oxygen evolution reaction (OER) properties in 1.0 mol·L-1 KOH alkaline electrolyte were tested. The results show that when the current density of HER and OER increases to 100 mA·cm-2, the optimal MoS2/Ni3S2/NF-4 composite electrode obtained after hydrothermal reaction for 4 h has low overpotential of 196 mV and 310 mV respectively, and shows low Tafel slope of 30 mV·dec-1 and 89.6 mV·dec-1, respectively. In addition, MoS2/Ni3S2/NF-4 heterostructure is used as a bifunctional electrocatalyst. When the current density reaches 10 mA·cm-2, the electrolytic cell needs a low voltage of 1.50 V, and has good stability under alkaline conditions. There is no significant change in performance within 100 h. It can be seen that MoS2/Ni3S2/NF stalactite rod array can become a bifunctional electrocatalyst for high-efficiency overall water splitting.
|
Published: 25 February 2024
Online: 2024-03-01
|
|
Fund:National Natural Science Foundation of China (51504147), and the School-level Scientific Research Foundation of Shaanxi University of Technology (SLGQD13(2)-18). |
|
|
1 Turner J A. Science, 2004, 305(5686), 972. 2 Fan C, Yue X, Shen X, et al. ChemElectroChem, 2021, 8(4), 665. 3 Fabbri E, Habereder A, Waltar K, et al. Catalysis Science & Technology, 2014, 4(11), 3800. 4 Li X, Hao X, Abudula A, et al. Journal of Materials Chemistry A, 2016, 4(31), 11973. 5 Zhang J, Wang T, Pohl D, et al. Angewandte Chemie, 2016, 128(23), 6814. 6 Jiang K, Liu B, Luo M, et al. Nature Communications, 2019, 10(1), 1. 7 Kuo D Y, Paik H, Kloppenburg J, et al. Journal of the American Chemical Society, 2018, 140(50), 17597. 8 Qin J F, Yang M, Chen T S, et al. International Journal of Hydrogen Energy, 2020, 45, 2745. 9 Tao L, Qiao M, Jin R, et al. Angewandte Chemie, 2019, 131(4), 1031. 10 Gao X, Zhou Y, Liu S, et al. Applied Surface Science, 2020, 502, 144155. 11 Xue Y, Zuo Z, Li Y, et al. Small, 2017, 13(31), 1700936. 12 Mu W N, Wang L X, Wang Q, et al. Materials Reports, 2021, 35(24), 24026(in Chinese). 穆伟娜, 王力霞, 王琼, 等. 材料导报, 2021, 35(24), 24026. 13 Wang X D, Xu Y F, Rao H S, et al. Energy & Environmental Science, 2016, 9(4), 1468. 14 Gao M R, Liang J X, Zheng Y R, et al. Nature Communications, 2015, 6(1), 1. 15 Wu B, Qian H, Nie Z, et al. Journal of Energy Chemistry, 2020, 46, 178. 16 Dong J, Zhang F Q, Yang Y, et al. Applied Catalysis B: Environmental, 2019, 243, 693. 17 Hinnemann B, Moses P G, Bonde J, et al. Journal of the American Chemical Society, 2005, 127(15), 5308. 18 Zhang L, Liu K, Wong A B, et al. Nano Letters, 2014, 14(11), 6418. 19 Jaramillo T F, Jørgensen K P, Bonde J, et al. Science, 2007, 317(5834), 100. 20 Lu Q, Yu Y, Ma Q, et al. Advanced Materials, 2016, 28(10), 1917. 21 Narasimman R, Waldiya M, Jalaja K, et al. International Journal of Hydrogen Energy, 2021, 46(11), 7759. 22 Xue J Y, Li F L, Zhao Z Y, et al. Dalton Transactions, 2019, 48(32), 12186. 23 Yang Y, Zhang K, Lin H, et al. ACS Catalysis, 2017, 7(4), 2357. 24 Liang Y, Li Y, Wang H, et al. Nature Materials, 2011, 10(10), 780. 25 Guo D, Luo Y, Yu X, et al. Nano Energy, 2014, 8, 174. 26 Wang F, Zhu Y, Tian W, et al. Journal of Materials Chemistry A, 2018, 6(22), 10490. 27 Zhang L, Chang C, Hsu C W, et al. Journal of Materials Chemistry A, 2017, 5(37), 19656. 28 Xiong X, Waller G, Ding D, et al. Nano Energy, 2015, 16, 71. 29 Liu N, Yang L, Wang S, et al. Journal of Power Sources, 2015, 275, 588. 30 Lin J, Wang P, Wang H, et al. Advanced Science, 2019, 6(14), 1900246. 31 Jiao S, Yao Z, Xue F, et al. Applied Catalysis B: Environmental, 2019, 258, 117964. 32 Song S, Wang Y, Li W, et al. Electrochimica Acta, 2020, 332, 135454. 33 Feng L L, Yu G, Wu Y, et al. Journal of the American Chemical Society, 2015, 137(44), 14023. 34 Fan R, Zhou J, Xun W, et al. Nano Energy, 2020, 71, 104631. 35 Kong D, Cha J J, Wang H, et al. Energy & Environmental Science, 2013, 6(12), 3553. 36 Kibsgaard J, Chen Z, Reinecke B N, et al. Nature Materials, 2012, 11(11), 963. 37 Fu Y, Pan J, Xiao G, et al. Journal of Materials Science: Materials in Electronics, 2021, 32(12), 16126. |
|
|
|