METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Incomplete Dynamic Recrystallization Microstructure on Mechanical Properties and Fracture Mechanism of Nickel-based Superalloy |
WANG Miao1, LIU Yanhui1,2,3,*, LIU Zhaozhao1
|
1 School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China 2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China 3 Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325002, Zhejiang, China |
|
|
Abstract The isothermal deformation of hot isostatic pressed nickel-based superalloy FGH4096 was carried out at 1 080 ℃ and 3 s-1 strain rate, and the maximum deformation was 50%. The microstructure evolution of the alloy during high temperature deformation was studied, and the mechanical properties of the region with typical deformation microstructure were tested at 700 ℃ and 0.001 s-1. Meanwhile, the microstructure and fracture were analyzed by optical microscope (OM), scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). It is found that the recrystallization degree of the incomplete dynamic recrystallization structure decreases from the center to the edge of the sample section, and the tensile strength of the center region is 1 422.79 MPa, the yield strength is 1 110.3 MPa and the elongation is 10.15%. The nucleation of recrystallized grains first occurs at grain boundaries and the nucleation mode is mainly protruding grain boundaries. In the incomplete dynamic recrystallized structure, there are subgrain boundaries in the deformed grains, which hinder the dislocation movement and improve the strength of the alloy. The fracture morphology is a mixture of dimple and tearing edge, and the fracture mode is transgranular fracture.
|
Published: 25 March 2024
Online: 2024-04-07
|
|
Fund:National Natural Science Foundation of China (51805308), the China Postdoctoral Science Foundation (2018M631189), the Natural Science Foundation of Shaanxi Province (2019JQ-303,2018JQ5161), and the Science and Technology Project of Wenzhou (G20180032). |
Corresponding Authors:
*liuyanhui@sust.edu.cn
|
|
|
1 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 1281(in Chinese). 师昌绪, 仲增墉. 金属学报, 2010, 46(11), 1281. 2 Du J H, Lyu X D, Dong J X, et al. Acta Metallurgica Sinica, 2019, 55(9), 1115(in Chinese). 杜金辉, 吕旭东, 董建新, 等. 金属学报, 2019, 55(9), 1115. 3 Zhang G Q, Zhang Y W, Zheng L, et al. Acta Metallurgica Sinica, 2019, 55(9), 1133(in Chinese). 张国庆, 张义文, 郑亮, 等. 金属学报, 2019, 55(9), 1133. 4 Qu X H, Zhang G Q, Zhang L. Journal of Aeronautical Materials, 2014, 34(1), 1(in Chinese). 曲选辉, 张国庆, 章林. 航空材料学报, 2014, 34(1), 1. 5 Zhang Y W, Liu J T. Materials China, 2013, 32(1), 1(in Chinese). 张义文, 刘建涛. 中国材料进展, 2013, 32(1), 1. 6 Ding Q Q, Bei H B, Yao X, et al. Applied Materials Today, 2021, 23, 101061. 7 Si J Y, Liu S H, Chen L. Solid State Phenomena, 2019, 298, 43. 8 Sreenu B, Sarkar R, Kumar S S S, et al. Materials Science & Enginee-ring A, 2020, 797, 140254. 9 Qiu C L, Yang D L, Wang G Q, et al. Materials Science & Engineering A, 2020, 769, 138461. 10 Hu B F, Tian G F, Jia C C, et al. Journal of Aeronautical Materials, 2007(4), 80(in Chinese). 胡本芙, 田高峰, 贾成厂, 等. 航空材料学报, 2007(4), 80. 11 Guo W M, Wu J T, Zhang F G, et al. Journal of Iron and Steel Research International, 2006, 13(5), 4. 12 Ning Y Q, Yuan S C, Sun Z Y, et al. Rare Metal Materials and Engineering, 2017, 46(2), 527(in Chinese). 宁永权, 袁士翀, 孙朝远, 等. 稀有金属材料与工程, 2017, 46(2), 527. 13 Gao J, Luo J, Li M Q. Journal of Aeronautical Materials, 2012, 32(6), 37(in Chinese). 高峻, 罗皎, 李淼泉. 航空材料学报, 2012, 32(6), 37. 14 Ning Y Q, Yao Z K, Yue T W, et al. Rare Metal Materials and Engineering, 2009, 38(10), 1783(in Chinese). 宁永权, 姚泽坤, 岳太文, 等. 稀有金属材料与工程, 2009, 38(10), 1783. 15 Kolb M, Freund L P, Fischer F, et al. Acta Materialia, 2018, 145, 247. 16 Shi D F, Zhang Z J, Hu J H, et al. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(3), 822. 17 Yao Y. Research on microstructure evolution low of TA18 titanium alloy during isothermal hot shear bending deformation. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 姚燕. TA18钛合金热剪切弯曲变形过程微观组织演变规律研究. 硕士学位论文, 哈尔滨工业大学, 2020. 18 Hou Q, Tao Y, Jia J. Journal of Materials Engineering, 2019, 47(3), 94(in Chinese). 侯琼, 陶宇, 贾建. 材料工程, 2019, 47(3), 94. 19 Ren Y B. Preparation and hot deformation behavior of TiAl-based alloys with bimodal grain size distribution. Master's Thesis, Changchun University of Technology, China, 2021(in Chinese). 任轶博. 双峰晶粒尺寸分布的TiAl基合金制备及热变形行为研究. 硕士学位论文, 长春工业大学, 2021. 20 Fan X M, Xu L J. Foundry Technology, 2017, 38(12), 2796(in Chinese). 范晓嫚, 徐流杰. 铸造技术, 2017, 38(12), 2796. 21 Li J Y, Huang P W, Ren X P, et al. Light Alloy Fabrication Technology, 2007(8), 42(in Chinese). 李静媛, 黄佩武, 任学平, 等. 轻合金加工技术, 2007(8), 42. 22 Li X W. The mechanical properties and damage behavior of dual structure superalloy at intermediate temperature. Ph.D. Thesis, University of Science and Technology of China, China, 2019(in Chinese). 李相伟. 双组织高温合金的中温力学性能和损伤行为. 博士学位论文, 中国科学技术大学, 2019. 23 Tang C, Cheng S J, Qu J L, et al. Rare Metal Materials and Enginee-ring, 2021, 50(9), 3280(in Chinese). 唐超, 程世君, 曲敬龙, 等. 稀有金属材料与工程, 2021, 50(9), 3280. 24 Wu D, Tian L X, Ma Z L, et al. Materials Reports, 2016, 30(12), 76(in Chinese). 武丹, 田礼熙, 马朝利, 等. 材料导报, 2016, 30(12), 76. 25 Sui S, Zhong C L, Chen J, et al. Journal of Alloys and Compounds, 2018, 740, 389. 26 An X L, Zhang B, Chu C L, et al. Materials Science and Engineering A, 2019, 744, 255. |
|
|
|