INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Development of High Performance Mg3(Sb, Bi)2-based Thermoelectric Materials |
XU Chenhui1,2, KONG Dong1,2, KUANG Zhixiang1,2, CHEN Zhuo1,2, MA Yan1,2, ZOU Fuxiang1,2, CHEN Xin1,2, HU Xiaoming1,2, FENG Bo1,2, FAN Xi'an1,2,*
|
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China 2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
|
|
Abstract Thermoelectric materials that convert electric energy and thermal energy are applied as functional materials in waste heat recovery and semiconductor refrigeration. Research on conventional thermoelectric materials has reached maturity; further development of such materials is hampered by the high cost of raw materials and low thermoelectric conversion efficiency. To overcome these limitations, Mg3(Sb, Bi)2Zintl phases have attracted extensive attention since their discovery and have been widely applied as thermoelectric materials because of their low cost and intrinsic low thermal conductivity. In addition, N-type Mg3(Sb, Bi)2-based conduction materials, having a high Seebeck coefficient owing to high energy band degeneracy, are hypothesized to be more effective than conventional medium- and low-temperature thermoelectric materials. However, the application of Mg3(Sb, Bi)2-based thermoelectric materials is limited because of the low carrier concentration caused by the large bandgap and the low thermal stability due to Mg vacancies. In addition to the maintenance of initial low thermal conductivity of such materials, researchers have continually tried to improve the electrical transport performance and thermal stability by employing different preparation processes and by conducting component and structure optimization. At present, the maximum ZT value of Mg3(Sb, Bi)2-based thermoelectric materials is above 1.8, and the conversion efficiency of the Mg3(Sb, Bi)2-based thermoelectric devices has been comparable to that of conventional low-temperature thermoelectric materials. This paper summarizes the physical properties and preparation methods of Mg3(Sb, Bi)2-based thermoelectric materials. The research progress on different optimization methods to prepare Mg3(Sb, Bi)2-based thermoelectric materials is discussed in detail, and possible future developments of the materials are presented.
|
Published:
Online: 2023-07-10
|
|
Fund:Enterprise Technological Innovation and Development Project of Hubei Province (QYJSCX2021000321),the National Key Research and Development Program of China(SQ2020YFF0404755),the “Innovation and Entrepreneurship Strategic Team” Project of Hubei Pro-vince (CYTDC2018000094), the Science and Technology Program of Ezhou City (EZ01-001-20190001),and the Natural Science Foundation of Hubei Province (2021CFB009). |
|
|
1 Jiang J, Chen L D, Bai S Q, et al. Journal of Alloys & Compounds, 2005, 390(1-2), 208. 2 Basu R, Bhattacharya S, Bhatt R, et al. Journal of Materials Chemistry A, 2014, 2(19), 6922. 3 Ben-Ayoun D, Sadia Y, Gelbstein Y. Journal of Alloys & Compounds, 2017, 722, 33. 4 Zhu B, Liu X X, Wang Q, et al. Energy & Environmental Science, 2020, 13(7), 2106. 5 Schäfer H, Eisenmann B, Edition W. Angewandte Chemie International Edition, 2010, 12(9), 694. 6 Liu Q, Liu K F, Wang Q Q, et al. Acta Materialia, 2022, 230, 117853. 7 Tamaki H, Sato H K, Kanno T. Advanced Materials, 2016, 28(46), 10182. 8 Ponnambalam V, Morelli D T. Journal of Electronic Materials, 2013, 42(7), 1307. 9 Zhou D W, Liu J S, Xu S H, et al. Physica B Condensed Matter, 2010, 405(13), 2863. 10 Jorgensen L R, Zhang J W, Zeuthen C B, et al. Journal of Materials Chemistry A, 2018, 6(35), 17171. 11 Song L R, Zhang J W, Iversen B B, et al. Physical Chemistry Chemical Physics, 2019, 21(8), 4295. 12 Calderón-Cueva M, Peng W Y, Clarke S M, et al. Chemistry of Materials, 2021, 33(2), 567. 13 Mao J, Shuai J, Song S W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40), 10548. 14 Shuai J, Ge B, Mao J, et al. Journal of the American Chemical Society, 2018, 140(5), 1910. 15 Wood M, Kuo J, Imasato K, et al. Advanced Materials, 2019, 31(35), 1902337. 16 Zhang J W, Iversen B B. Journal of Applied Physics, 2019, 126(8), 085014. 17 Chen Y Q, Wang C, Ma Z, et al. Current Applied Physics, 2021, 21, 25. 18 Chen X X, Wu H J, Cui J, et al. Nano Energy, 2018, 52, 246. 19 Mao J, Zhu H T, Ding Z W, et al. Science, 2019, 365(6452), 495. 20 Li J, Zhang S, Jia F, et al. Materials Today Physics, 2020, 15, 100269. 21 Liang Z X, Xu C C, Shang H J, et al. Materials Today Physics, 2021, 19, 100413. 22 Zintl E, Husemann E. Zeitschrift Für Physikalische Chemie, 1933, 21B(1), 138. 23 Ferrier R P, Herrell D J. Journal of Non-Crystalline Solids, 1970, 2, 278. 24 Sutton C M. Solid State Communications, 1975, 16(3), 327. 25 Bringans R D, Sutton C M. Solid State Communications, 1976, 19(3), 277. 26 Kajikawa T, Kimura N, Yokoyama T. In:Proceedings ICT'03. 22nd International Conference on Thermoelectrics. France, 2003, pp. 305. 27 Xin H X, Qin X Y. Journal of Physics D:Applied Physics, 2006, 39(24), 5331. 28 Imai Y, Watanabe A. Journal of Materials Science, 2006, 41(8), 2435. 29 Wang L. Journal of Rare Earths, 2006, 24(1), 376. 30 Yang M B, Pan F S, Shen J, et al. Transactions of Nonferrous Metals Society of China, 2009, 19(2), 287. 31 Tani J I, Takahashi M, Kido H, et al. Physica B Condensed Matter, 2010, 405(19), 4219. 32 Zou C M, Zhang Y M, Wang W, et al. Transactions of Nonferrous Metals Society of China, 2011, 21, s222. 33 Condron C L, Kauzlarich S M, Gascoin F, et al. Journal of Solid State Chemistry, 2016, 179(8), 2252. 34 Zhang J W, Song L R, Pedersen S H, et al. Nature Communications, 2017, 8, 13901. 35 Zhang J W, Song L R, Borup K A, et al. Advanced Energy Materials, 2018, 8(16), 1702776. 36 Li J, Zhang S, Zheng S Q, et al. The Journal of Physical Chemistry C, 2019, 123(34), 20781. 37 Zhu Q, Song S W, Zhu H T, et al. Journal of Power Sources, 2019, 414, 393. 38 Imasato K, Wood M, Kuo J J, et al. Journal of Materials Chemistry A, 2018, 6(41), 19941. 39 Giuseppetti G, Mazzi F, Tadini C. Tschermaks Mineralogische Und Petrographische Mitteilungen, 1977, 24(1), 1. 40 Sevast'Yanova L G, Kravchenko O V, Gulish O K, et al. Inorganic Materials, 2006, 42(8), 863. 41 Li A R, Fu C G, Zhao X B, et al. Research, 2020, 2020(1), 1. 42 Peng W Y, Petretto G, Rignanese G M, et al. Joule, 2018, 2(19), 1879. 43 Sedighi M, Nia B A, Zarringhalam H, et al. European Physical Journal Applied Physics, 2013, 61(1), 10103. 44 Ullah M, Murtaza G, Ramay S M, et al. Materials Research Bulletin, 2017, 91, 22. 45 Zhang J W, Song L R, Iversen B B. NPJ Computational Materials, 2019, 5, 76. 46 Imasato K, Kang S D, Ohno S. Materials Horizons, 2018, 5(1), 59. 47 Sun X, Li X, Yang J O. Journal of Computational Chemistry, 2019, 40(18), 1693. 48 Huang S, Wang Z Y, Xiong R, et al. Nano Energy, 2019, 62, 212. 49 Verbrugge D M, Zytveld J B V. Journal of Non-Crystalline Solids, 1993, 156, 736. 50 Zhan X M, Jin L, Dai X F, et al. The Journal of Physical Chemistry Letters, 2017, 8(19), 4814. 51 Lee J, Monserrat B, Seymour I D, et al. Journal of Materials Chemistry A, 2018, 6(35), 16983. 52 Tan X J, Liu G Q, Hu H Y, et al. Journal of Materials Chemistry A, 2019, 7(15), 8922. 53 Pei Y Z, Shi X Y, Lalonde A, et al. Nature, 2018, 473(7345), 66. 54 Zhao L D, Zhang B P, Li J F, et al. Solid State Sciences, 2008, 10(5), 651. 55 Go J B, Lee H J, Yu H, et al. Journal of Alloys and Compounds, 2019, 821, 153442. 56 Zhu Y K, Wu P, Guo J, et al. Ceramics International, 2020, 46(10), 14994. 57 Kanno T, Tamaki H, Sato H K, et al. Applied Physics Letters, 2018, 112(3), 033903. 58 Shuai J, Wang Y M, Kim H S, et al. Acta Materialia, 2015, 93, 187. 59 Song S W, Mao J, Shuai J, et al. Applied Physics Letters, 2018, 112(9), 092103. 60 Song S W, Mao J, Bordelon M, et al. Materials Today Physics, 2019, 8, 25. 61 Li J F, Pan Y, Wu C F, et al. Science China Technological Sciences, 2017, 60(9), 1347. 62 Fang D, Sun Z, Li Y Y, et al. Applied Thermal Engineering, 2016, 92, 187. 63 Shi X M, Zhao T T, Zhang X Y. Advanced Materials, 2019, 31(36), 1903387. 64 Kihou K, Kunioka H, Nishiate H, et al. Journal of Materials Research and Technology, 2020, 10, 438. 65 Lyu F, Zhang Q, Fan W H, et al. Journal of Materials Science, 2018, 53, 8039. 66 Shuai J, Mao J, Song S W, et al. Energy & Environmental Science, 2017, 10(3), 799. 67 Wood M, Imasato K, Anand S, et al. Journal of Materials Chemistry A, 2020, 8(4), 2033. 68 Wang Y, Zhang X, Liu Y Q, et al. Vacuum, 2020, 177, 109388. 69 Zhang Q, Hou J C, Fan J F, et al. Physical Chemistry Chemical Physics, 2020, 22(13), 7012. 70 Hu J S, Guo F K, Guo M C, et al. Journal of Materiomics, 2020, 6(14), 729. 71 Zhang J W, Song L R, Mamakhel A, et al. Chemistry of Materials, 2017, 29(12), 5371. 72 Shi X M, Sun C, Zhang X Y, et al. Chemistry of Materials, 2019, 31(21), 8987. 73 Li J, Jia F, Zhang S, et al. Journal of Materials Chemistry A, 2019, 7(33), 19316. 74 Zhang F, Chen C, Yao H H, et al. Advanced Functional Materials, 2020, 30(5), 1906143. 75 Han Z J, Gui Z G, Zhu Y B, et al. Research, 2020, 2020, 1672051. 76 Goldsmid H J. Journal of Applied Physics, 1961, 32(10), 2198. 77 Madar N, Givon T, Mogilyansky D, et al. Journal of Applied Physics, 2016, 120(3), 71. 78 Imasato K, Kang S D, Snyder G J. Energy & Environmental Science, 2019, 12(3), 965. 79 Koumoto K, Mori T. Thermoelectric Nanomaterials, Springer, Berlin, 2013, pp. 3. 80 Zevalkink A, Smiadak D M, Blackburn J L, et al. Applied Physics Reviews, 2018, 5(2), 021303. 81 Pan Y, Yao M Y, Hong X C, et al. Energy & Environmental Science, 2020, 13(6), 1717. 82 Pomrehn G S, Zevalkink A, Zeier W G, et al. Angewandte Chemie International Edition, 2014, 126(13), 3490. 83 Du Z L, Zhu T J, Chen Y, et al. Journal of Materials Chemistry, 2012, 22(14), 6838. 84 Ohno S, Imasato K, Anand S, et al. Joule, 2018, 2(1), 141. 85 Imasato K, Ohno S, Kang S D, et al. APL Materials, 2018, 6(1), 016106. 86 May A F, Mcguire M A, Ma J, et al. Physical Review, 2012, 85(3), 035202. 87 Zhang J W, Song L R, Iversen B B. ACS Applied Materials & Interfaces, 2021, 13(9), 10964. 88 Liang J S, Yang H Q, Liu C Y, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 21799. 89 Kuo J J, Yu Y, Kang S D, et al. Advanced Materials Interfaces, 2019, 6(13), 1900429. 90 Sui J H, Li J, He J Q, et al. Energy & Environmental Science, 2013, 6(10), 2916. 91 Feng D, Ge Z H, Wu D, et al. Physical Chemistry Chemical Physics, 2016, 18(46), 31821. 92 Li G D, Aydemir U, Wood M, et al. Journal of Materials Chemistry A, 2017, 5(19), 9050. 93 Shi X M, Sun C, Bu Z L, et al. Advanced Science, 2019, 6(16), 1802286. 94 Shang H J, Liang Z X, Xu C C, et al. Acta Materialia, 2020, 201, 572. 95 Liu Z H, Sato N, Gao W H, et al. Joule, 2021, 5(5), 1196. 96 Bu Z L, Zhang X Y, Hu Y X, et al. Energy & Environmental Science, 2021, 14(12), 6506. 97 Zhang J W, Song L R, Iversen B B. Angewandte Chemie International Edition, 2019, 59(11), 4278. 98 Zhang Q, Su X L, Yan Y G, et al. ACS Applied Materials & Interfaces, 2016, 8(5), 3268. 99 Yang D W, Su X L, Yan Y G, et al. Chemistry of Materials, 2016, 28(13), 4628. |
|
|
|