METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Status of Conductive Lubricated Additives for Applications in Electrical Contact and Tribology Behavior |
LI Hong1, CHEN Zisong1, LI Zhuoxin1,*, ZHU Jing1, Erika Hodúlová2
|
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2 Slovak Academy of Sciences, Institute of Materials and Machine Mechanics, Bratislava 84513, Slovak Republic |
|
|
Abstract Conductive lubricants play an important role in reducing friction and wear during electrical contact, improving efficiency, prolonging service life, and promoting green, intelligent and efficient development in power electronics, the aerospace industry and rail transit. However, at this stage, conductive lubricants demonstrate problems such as insufficient heat resistance, dispersion stability, oxidation resistance and corrosion resistance, and it is difficult to meet the harsh requirements of complex working conditions in electromagnetic, temperature, frictional thermal stress and multi-coupled fields. Numerous scholars have studied various new conductive lubricated additives, including graphene, carbon nanotubes, conductive polymers, and ionic liquids. It has been found that the aforementioned materials added to conductive lubricants as oil-based additives can produce frictional physical adsorption and a chemical reaction at the electrical contact sub-interface, forming a friction reaction film that plays a role in reducing contact resistance, improving interfacial current-carrying efficiency, reducing contact pair wear, and improving surface corrosion resistance. In this paper, by reviewing the research status of tribological behavior in metal-based, carbon-based, ionic-liquid-based, and composite conductive lubricant additives, the influence of size, shape, distribution and mechanical properties of lubricant film on the tribological behavior of the pair is analyzed. The influence of size, composition, concentration, and dispersity of conductive lubricant additives on the anti-friction and anti-wear performance of lubricants is summarized, as is the lubrication mechanism. Finally, we look ahead to the development trends of conductive additives in the electrical contact field.
|
Published:
Online: 2023-07-10
|
|
Fund:National Natural Science Foundation of China (52074017), Beijing Municipal Natural Science Foundation (3202002), International Research Cooperation Seed Fund of Beijing University of Technology (2021A14) and China-CEEC Joint Education Project for Higher Education(2021113). |
|
|
1 Braunovic M, Konchits V, Myshkin N, et al. Electrical contacts fundamentals, applications and technology, Mechanical Industry Press, China, 2010 (in Chinese). 布朗诺维克, 康奇兹, 米西金, 等. 电接触理论、应用与技术, 机械工业出版社, 2010. 2 Song J, Schinow V. Wear, 2015, 330, 400. 3 Wang Y A, Li J X, Yan Y, et al. Tribology International, 2012, 50, 26. 4 Li S S, Huang F X, Wang Z, et al. Materials Reports, 2008, 22(S1), 303 (in Chinese). 李司山, 黄福祥, 汪振, 等. 材料导报, 2008, 22(S1), 303. 5 Fan X, Xia Y, Wang L, et al. Tribology Letters, 2014, 53(1), 281. 6 Wang Z, Xia Y, Liu Z. Lubrication Science, 2012, 24(4), 174. 7 Wang Z, Xia Y, Liu Z, et al. Tribology Letters, 2012, 46(1), 33. 8 Muetze A, Tamminen J, Ahola J. IEEE Transactions on Industry Applications, 2011, 47(4), 1767. 9 Tischmacher H, Gattermann S, Kriese M, et al. In:Proceedings of the IECON 2010 -36th Annual Conference on IEEE Industrial Electronics Society. Glendale, 2010. 10 Willwerth A, Roman M. In:Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn, 2013. 11 Senatore A. Lubricants, 2020, 8(4), 48. 12 Karki A, Phuyal S, Tuladhar D, et al. Applied System Innovation, 2020, 3(3), 35. 13 Mustafa W, Dassenoy F, Sarno M, et al. Lubrication Science, 2022, 34(1), 1. 14 Ge X Y. Electrical conductive theory and lubrication technology of conductive grease in electric transmission/transformation equipment. Ph. D. Thesis. North China Electric Power University, China, 2016. 葛翔宇. 电力复合脂在输变电设备中的导电理论与润滑技术研究. 博士学位论文, 华北电力大学, 2016. 15 Huo M, Wu H, Xie H, et al. Tribology International, 2020, 151, 106378. 16 Qi X, Jia Z, Yang Y, et al. Tribology International, 2011, 44(7-8), 805. 17 Suzumura J. Foreign Rolling Stock, 2018, 57(1), 42. 18 Dai W, Kheireddin B, Gao H, et al. Tribology International, 2016, 102, 88. 19 Li X W, Wang G G, Qiang C M. Electric Power Construction, 2011, 32(8), 99 (in Chinese). 李星伟, 王国刚, 强春媚. 电力建设, 2011, 32(8), 99. 20 El-Adly R A, Turky G M. Egyptian Journal of Petroleum, 2018, 27(2), 209. 21 Si L, Pan Y, Zhang X, et al. Industrial Lubrication and Tribology, 2018, 70(9), 1714. 22 Luniak M, Monser H P, Brod V, et al. In: Proceedings of the First International IEEE Conference on Polymers and Adhesives in Microelectro-nics and Photonics Incorporating POLY, PEP & Adhesives in Electronics Proceedings (Cat No 01TH8592). Potsdam, 2001, pp. 314. 23 Luniak M, Roellig M, Wolter K J. In: Proceedings of the 26th International Spring Seminar on Electronics Technology: Integrated Management of Electronic Materials Production. High Tatras, 2003, pp. 104. 24 Wang P, Jin S L, Li X H, et al. Guangzhou Chemical Industry, 2011, 39(5), 62 (in Chinese). 王萍, 金石磊, 李小慧, 等. 广州化工, 2011, 39(5), 62. 25 Abad M D, Sánchez-López J C. Wear, 2013, 297(1-2), 943. 26 Shen C. Study on preparation and conductivity of molybdenum disulfide-mocene composite functional materials. Ph. D. Thesis, Harbin University of Science and Technology, China, 2020. 沈沉. 二硫化钼-茂类复合功能材料的制备及导电性能研究. 博士学位论文, 哈尔滨理工大学, 2020. 27 Li M, Gao C X, Zhang D M, et al. Chinese Journal of High Pressure Physics, 2008, 22(1), 43. 李明, 高春晓, 张冬梅, 等. 高压物理学报, 2008, 22(1), 43. 28 Xu B H, Lin B Z, Chen Z J, et al. Journal of Colloid & Interface Science, 2009, 330(1), 220. 29 Yadgarov L, Petrone V, Rosentsveig R, et al. Wear, 2013, 297(1-2), 1103. 30 Zhou L H, Wei X C, Ma Z P, et al. Applied Surfaceence, 2017, 407, 21. 31 Rabaso P, Ville F, Dassenoy F,et al. Wear, 2014, 320(1-2), 161. 32 Xu Y, Hu E Z, Hu K H, et al. Tribology International, 2015, 92, 172. 33 Kalin M, Kogovšek J, Remškar M. Wear, 2013, 303(1-2), 480. 34 Wan Q, Jin Y, Sun P, et al. Journal of Nanoparticle Research, 2014, 16(5), 1. 35 Koshy C P, Rajendrakumar P K, Thottackkad M V. Wear, 2015, 330, 288. 36 Wu N, Hu N, Zhou G, et al. Journal of Experimental Nanoscience, 2018, 13(1), 27. 37 Savage R H. Journal of Applied Physics, 1948, 19(1), 1. 38 Dudder G J, Zhao X, Krick B, et al. Tribology Letters, 2011, 42(2), 203. 39 Moustafa S F, El-Badry S A, Sanad A M, et al. Wear, 2002, 253(7-8), 699. 40 Zhang H J, Zhang Z Z, Guo F. Tribology Transactions, 2011, 54(3), 417. 41 Choi Y, Lee C, Huang Y, et al. Current Applied Physics, 2009, 9(2), E124. 42 Yu H, Xu Y, Shi P, et al. Surface and Coatings Technology, 2008, 203(1-2), 28. 43 Tepper S. Wear, 2002, 252(1-2), 63. 44 Tao J M, Hong P, Chen X F, et al. Journal of Materials Engineering, 2017, 45(4), 128 (in Chinese). 陶静梅, 洪鹏, 陈小丰, 等. 材料工程, 2017, 45(4), 128. 45 Dai L F, An L B, Chen J. Journal of Aeronautical Materials, 2016, 36(5), 90 (in Chinese). 代利峰, 安立宝, 陈佳. 航空材料学报, 2016, 36(5), 90. 46 Hong H, Thomas D, Waynick A, et al. Journal of Nanoparticle Research, 2010, 12(2), 529. 47 Liu C, Xia Y Q, Cao Z F. Tribology, 2015, 35(4), 393 (in Chinese). 刘椿, 夏延秋, 曹正锋. 摩擦学学报, 2015, 35(4), 393. 48 Christensen G, Yang J, Lou D, et al. Synthetic Metals, 2020, 268, 116496. 49 Shahnazar S, Bagheri S, Hamid S A. International Journal of Hydrogen Energy, 2016, 41(4), 3153. 50 Chen C, Chen X, Xu L, et al. Carbon, 2005, 43(8), 1660. 51 Chauveau V, Mazuyer D, Dassenoy F, et al. Tribology Letters, 2012, 47(3), 467. 52 Kim K S, Lee H J, Lee C, et al. ACS Nano, 2011, 5(6), 5107. 53 Kitt A L, Qi Z, Remi S, et al. Nano Letters, 2013, 13(6), 2605. 54 Felix Wählischa, Judith Hotha, Christian Held, et al. Wear, 2013, 300(1-2), 78. 55 Berman D, Erdemir A, Sumant A V. Materials Today, 2014, 17(1), 31. 56 Penkov O, Kim H J, Kim H J, et al. International Journal of Precision Engineering & Manufacturing, 2014, 15(3), 577. 57 Guo W, Yin J, Qiu H, et al. Friction, 2014, 2(3), 209. 58 Berman D, Erdemir A, Sumant A V. Carbon, 2013, 54, 454. 59 Huang H D, Tu J P, Gan L P, et al. Wear, 2006, 261(2), 140. 60 Zhang W, Zhou M, Zhu H, et al. Journal of Physics D Applied Physics, 2011, 44(20), 2083. 61 Yoshino Y, Inoue K, Takeuchi M, et al. Nanoscale, 2013, 5(7), 3063. 62 Pershin V F, Ovchinnikov K A, Alsilo A A, et al. Nanotechnologies in Russia, 2018, 13(5-6), 344. 63 Ye C, Liu W, Chen Y, et al. Chemical Communications (Cambridge, England), 2001, 21, 2244. 64 Zhou F, Liang Y, Liu W. Cheminform, 2009, 38(9), 2590. 65 Lu R, Nanao H, Kobayashi K, et al. Journal of the Japan Petroleum Institute, 2010, 53(1), 55. 66 Zhou Y, Qu J. ACS Applied Materials & Interfaces, 2016, 9(4), 3209. 67 Wu L N. Preparation research, performance study and finite element analysis of conductive lubricating grease. Ph. D. Thesis, North China Electric Power University, China, 2013. 吴礼宁. 导电润滑脂的制备、性能研究及有限元分析. 博士学位论文, 华北电力大学, 2013. 68 Cao Z F, Xia Y Q, Liu L H, et al. Tribology International, 2018, 130, 27. 69 Yang X, Meng Y, Tian Y. Tribology Letters, 2014, 56(1), 161. 70 Huang G W, Yu Q L, Ma Z F, et al. Friction, 2019, 7(1), 18. 71 Greig D, Bube R H. American Journal of Physics, 1969, 40(5), 43. 72 Palacio M, Bhushan B. Tribology Letters, 2010, 40(2), 247. 73 Cai M, Yu Q, Liu W, et al. Chemical Society Reviews, 2020, 49(21), 7753. 74 Liu X Q, Zhou F, Liang Y M, et al. Wear, 2006, 261(10), 1174. 75 Cai M, Liang Y, Feng Z, et al. Wear, 2013, 306(1-2), 197. 76 Kamimura H, Kubo T, Minami I, et al. Tribology International, 2007, 40(4), 620. 77 Viesca J L, Hernández B A, González R, et al. Wear, 2010, 269(1-2), 112. 78 Qu J, Chi M, Meyer H M, et al. Tribology Letters, 2011, 43(2), 205. 79 Qu J, Bansal D G, Yu B, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 997. 80 Qu J, Luo H, Chi M, et al. Tribology International, 2014, 71, 88. 81 Barnhill W C, Qu J, Luo H, et al. ACS Applied Materials & Interfaces, 2014, 6(24), 22585. 82 Landauer A K, Barnhill W C, Qu J. Wear, 2016, 354-355, 78. 83 Sharma V, Doerr N, Aswath P B. RSC Advances, 2016, 6(27), 22341. 84 Zhou Y, Leonard D N, Guo W, et al. Scientific Reports, 2017, 7, 8426. 85 Dyck O, Leonard D N, Edge L F, et al. Advanced Materials Interfaces, 2017, 4(21), 1700622. 86 Guo W, Zhou Y, Sang X, et al. ACS Applied Materials & Interfaces, 2017, 4(21), 1700622. 87 Xu Y, Peng Y, Dearn K D, et al. Wear, 2015, 342, 297. 88 Li Z, Wan Q, Li G, et al. Materialwissenschaft und Werkstofftechnik, 2019, 50(1), 52. 89 Li Z X, Wan Q, Yuan T, et al. Journal of Materials Engineering and Performance, 2019, 28(5), 2788. 90 Ge X, Xia Y Q, Shu Z, et al. Friction, 2015, 3(1), 56. |
|
|
|