METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Study on the Oxidation Resistance of Electronic Grade Ultrafine Dendritic Copper Powder |
FANG Yachao1, PAN Mingxi2, HUANG Hui1,2,*, HE Yapeng1, ZHANG Panpan1, YANG Congqing1, GUO Zhongcheng1, CHEN Buming1
|
1 College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Kunming Gaoju Technology Co., Ltd., Kunming 650106, China |
|
|
Abstract Ultrafine copper powder is widely employed as materials in electronic pastes. Due to its large specific surface area and high surface activity, it is easy to be oxidized to produce copper oxide or cuprous oxide, thereby reducing its conductivity and activity. In this work, surface treatment of the electronic grade ultrafine dendritic copper powder was conducted by the combination of benzotriazole and surface treatment agent. Through high temperature oxidation, conductivity, morphology and substance equivalence analysis, the effect of surface treatment agent on the oxidation resistance, conductivity, morphology and phase structure of copper powder were studied. The results suggest that the conductivity of the copper powder after the surface treatment at 100—200 ℃ was improved to different degrees than that of the untreated copper powder. The sample also exhibited better conductivity and still maintained the resistivity of 0.224 Ω·cm. Besides, no obvious copper oxide or cuprous oxide produced, and collapse of the dendritic shape structure was observed. Therefore, benefitting from the introduction of the benzotriazole and surface treatment agent, the oxidation resistance of the electronic grade ultrafine dendritic copper powder is considerably improved, which could meet the requirement of conductive fillers for medium-low temperature electronic pastes.
|
Published: 10 April 2023
Online: 2023-04-07
|
|
Fund:National Natural Science Foundation of China (52064028), the Yunnan Provincial Basic Research Program Key Project (202101AS070013), and the Yunnan Provincial Central Guidance and Local Special Project (202107AC110009). |
|
|
1 Tan N, Guo Z C, Chen B M, et al. Materials Protection, 2009, 42(11), 33(in Chinese). 谭宁, 郭忠诚, 陈步明, 等. 材料保护, 2009, 42(11), 33. 2 Cao X G, Zhang H Y. Powder Technology, 2012, 226, 53. 3 Liu Y, Zhou S Q, Li Q X, et al. World Nonferrous Metals, 2017 (20), 27(in Chinese). 刘银, 周少强, 李清湘, 等. 世界有色金属, 2017 (20), 27. 4 Wu S. Materials Letters, 2007, 61(4/5), 1125. 5 Si X G, Lu X G, Li C X, et al. Journal of University of Science and Technology Beijng, 2010, 32(7), 905(in Chinese). 司新国, 鲁雄刚, 李传雄, 等. 北京科技大学学报, 2010, 32(7), 905. 6 Lou W B, Cai W Q, Li P, et al. Powder Technology, 2018, 326, 84. 7 Wang Y M, Yu M J, Wang S, et al. Materials Reports, 2007, 21(Z1), 126(in Chinese). 王玉棉, 于梦娇, 王胜, 等. 材料导报, 2007, 21(Z1), 126. 8 Wang Q F, Liu X X, Wang X J. Surface Technology, 2007, 36(1), 45(in Chinese). 王青锋, 刘祥萱, 王煊军. 表面技术, 2007, 36(1), 45. 9 Cao X G, Zhang H Y, et al. Electronic Materials Letters, 2012, 8(4), 467. 10 Yu S S, Li S M, Ge X, et al. Industrial & Engineering Chemistry Research, 2014, 53(6), 2238. 11 Huang H, Zhou J Y, Fu R C, et al. Rare Metal Materials and Engineering, 2014, 43(2), 490(in Chinese). 黄惠, 周继禹, 付仁春, 等. 稀有金属材料与工程, 2014, 43(2), 490. 12 Yu S, Peng M, Hu Q, et al. Journal of Wuhan Institute of Technology, 2020, 42(6), 622(in Chinese). 余珊, 彭明, 胡琴, 等. 武汉工程大学学报, 2020, 42 (6), 622. 13 Guo Y H, Jiang B B, Chen J Z, et al. Surface & Coatings Technology, 2007, 202(3), 555. 14 Sun Z, Yu X H, Zhuang Z Y, et al. Surface Technology, 2021, 50(5), 119(in Chinese). 孙志, 于晓辉, 庄再裕, 等. 表面技术, 2021, 50(5), 119. 15 Han G S. Study on storage stability of copper powder epoxy resin conductive adhesive. Master's Thesis, Jiangsu University of Science and Technology, China, 2010(in Chinese). 韩广帅. 铜粉环氧树脂导电胶储存稳定性的研究. 硕士学位论文, 江苏科技大学, 2010. 16 Yuan Y, Song P W, Zhao K. Surface Technology, 2007, 36(1), 11(in Chinese). 袁颖, 宋佩维, 赵康. 表面技术, 2007, 36(1), 11. 17 Sun H P, Wang K J, Cai X L, et al. Materials Protection, 2013, 46(6), 18(in Chinese) 孙鸿鹏, 王开军, 蔡晓兰, 等. 材料保护, 2013, 46(6), 18. 18 Xu R F, Luo Y, Xue W G. Synthetic Lubricants, 2017, 44(1), 22(in Chinese). 徐瑞峰, 罗意, 薛卫国. 合成润滑材料, 2017, 44(1), 22. 19 Qiu L H, Wu C H, Li S R. The Chinese Journal of Process Engineering, 2004, 4(Z1), 68(in Chinese). 邱六合, 吴昶辉, 李世荣. 过程工程学报, 2004, 4(Z1), 68. 20 Song Y H, Lan X Z, Yang Y, et al. Materials Reports, 2009, 23(2), 54(in Chinese). 宋永辉, 兰新哲, 杨勇, 等. 材料导报, 2009, 23(2), 54. 21 Winnicki M, Malachowska A, Baszczuk A, et al. Surface & Coatings Technology, 2017, 318, 90. 22 Hu Y S, Tang Y, Zhou J C, et al. Materials Reports, 2013, 27(S2), 43(in Chinese). 胡永栓, 唐耀, 周珺成, 等. 材料导报, 2013, 27(S2), 43. |
|
|
|