METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Tensile Properties and Failure Mechanisms Analysis of Composite Hybrid Structures Based on Metal Skeletons |
WU Duoduo1,2, ZHENG Huilong1,*, KANG Zhenya1, XI Changqing1, ZHANG Tan1
|
1 Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 2 School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Anew hybrid structure is designed which combines metal additive manufacturing, composite weaving and composite stitching processes. After the metal part and woven composite are fixed by normal stitching, the sample is finally formed by the co-curing process. This structure avoids the problems associated with conventional hybrid methods such as delamination failure, and enables flexible forming and stable joining of metal and composite materials on a macroscopic scale. The mechanical properties and failure modes of this new hybrid structure under quasistatic tensile loading are investigated by non-contact image measurement and analysis techniques. The results show that: the delamination cracks originate from the strain difference and shear stress between the different material layers, while the stitching fibres can inhibit the crack extension at the delamination interface and improve the fracture toughness; the tensile strength of the hybrid structure decreases with the thickness of the structure increasing, and only changing the pre-determined hole shape has no significant effect on the general mechanical properties of the hybrid structure; the hybrid structure is affected by various failure modes, mainly involving warp fracture, matrix failure, fracture and pull-out of the suture fibres, plastic failure of the metal, etc.
|
Published:
Online: 2022-10-26
|
|
Fund:Innovation Guidance Fund, Institute of Engineering Thermophysics, Chinese Academy of Sciences(Y85402BZ11). |
|
|
1 Gao Y, Li J L. Journal of Donghua University (English Edition), 2015, 32(3), 117. 2 Du S Y. Act Materia Composita Sinica, 2007, 24(1), 12(in Chinese). 杜善义. 复合材料学报, 2007, 24(1), 12. 3 Ma X Q, Su Z T. Journal of Materials Engineering, 2020, 48(10), 48(in Chinese). 马绪强, 苏正涛. 材料工程, 2020, 48(10), 48. 4 Lehmhus D, Hehl A V, Hausmann J, et al. Advanced Engineering Materials, 2019, 21(6), 1900056. 5 Kazemi M E, Shanmugam L, Yang L, et al. Composites Part A: Applied Science and Manufacturing, 2019, 128, 105679. 6 Zou T C, Qin J X, Li L H, et al. Materials Reports B:Research Papers, 2020, 34(10), 147(in Chinese). 邹田春,秦嘉徐,李龙辉,等. 材料导报:研究篇,2020,34(10),147. 7 Qiao H T, Liang B, Zhang J Y, et al. Journal of Materials Engineering, 2018, 46(12), 38(in Chinese). 乔海涛, 梁滨, 张军营, 等. 材料工程,2018, 46(12), 38. 8 Amancio S T, Bueno C, Dos Santos J F, et al. Materials Science & Engineering A, 2011, 528(10-11), 3841. 9 Pramanik A, Basak A K, Dong Y, et al. Composites Part A Applied Science & Manufacturing, 2017, 101, 1. 10 Mariam M, Afendi M, Abdul Majid M S, et al. Composite Structures, 2018, 200, 647. 11 Meschut G, Hahn O, Janzen V, et al. Welding in the World, 2014, 58(1), 65. 12 Zitoune R, Collombet F. Composites Part A: Applied Science and Manufacturing, 2007, 38(3), 858. 13 Feistauer E E, Dos Santos J F, Amancio-Filho S T, et al. Polymer Engineering and Science,2019, 59(4), 661. 14 Xiong W, Blackman B, Dear J P, et al. Composite Structures, 2015,134, 587. 15 Li N, Chen P H, Liu X Y, et al. Composites Science & Technology, 2015, 117, 334. 16 Reisgen U, Schiebahn A, Lotte J, et al. Journal of Materials Processing Technology, 2020, 282(1), 116674. 17 Abe H, Chung J C, Mori T, et al. Composites Part B: Engineering, 2019, 172, 26. 18 Parkes P N, Butler R, Meyer J, et al. Composite Structures, 2014, 118(1), 250. 19 Ramaswamy K, O’higgins R M, Corbett M C, et al. Composite Structures, 2020, 253, 112769. 20 Lu Y R, Hua Y, Chen X H, et al. Journal of Materials Engineering, 2020, 450(11), 166(in Chinese). 卢轶榕, 华勇, 陈秀华, 等. 材料工程, 2020, 450(11), 166. 21 Zhou Y D, Sun Y C, Huang T L, et al. Symmetry in Applied Continuous Mechanics, 2019, 11(10), 1292. 22 Bigaud J, Aboura Z, Martins A T, et al. Composite Structures, 2017, 184, 249. 23 Ghasemnejad H, Argentiero Y,Tez T A, et al. Materials and Design, 2013, 51(10), 552. 24 Ma Y Q, Qi L H, Zheng W Q, et al. Transactions of Nonferrous Metals Society of China (English Edition), 2013, 23(7), 1915. 25 Bai R X, Bao S H, Lei Z K, et al. International Journal of Adhesion and Adhesives, 2018, 81, 48. 26 Sharma A P, Khan S H, Parameswaran V, et al. Journal of Composite Materials, 2020, 53(11), 1489. 27 Isart N, Elsaid B, Ivanov D, et al. Composite Structures,2015,132,1219. 28 Wang C Z, Lu Y, He W T, et al. Thin-Walled Structures, 2020, 154(7), 106866. 29 Chen X C. Interlaminar fracture toughness and impact response of a novel fiber metal laminate, Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese). 陈星弛. 新型金属纤维层板层间断裂韧性及冲击响应. 硕士学位论文, 大连理工大学, 2020. |
|
|
|