INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of the Sensing Applications of Hydroxyapatite |
WU Jiangsong, TAN Yanni*, LIU Yanjun
|
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Sensors are convenient, fast and sensitive, and have great potential in various detection fields. Hydroxyapatite(Ca10(PO4)6(OH)2, HAp) is the main inorganic component of the bone and tooth of vertebrate, and has been widely used as biomaterial.In recent years, it has been widely used for sensing materials and has shown great potential, due to its unique three-dimensional network structure, good stability, excellent adsorption capacity, and ion exchange feature. The performance of pure HAp is limited when used alone due to the constraints of conductivity and mechanical strength. In order to improve its comprehensive performance, researchers mainly try to modify it by ion-doping (Ag+, Fe2+, Pb2+, etc.) or preparing composite materials with other materials, such as graphene, carbon nanotubes, conductive polymers, biological enzymes and so on. Some progress has been made in improving the sensitivity and stability, and reducing the detection limits of HAp. HAp and its composites have better sensing performance for ammonia and alcohol gases than other gases, and can detect lower concentrations of toxic and harmful gases at room temperature. Due to its good ion exchange properties, HAp can detect many heavy metal ions, such as Pb2+, Cu2+, Hg2+, As3+, Cd2+ and so on, and can be used in the fields of environment protection and medical care. HAp can also be used to detect more than ten kinds of biomass, including uric acid, glucose, L-dopa, etc. If used as a carrier of biological enzymes, it can detect specific substances with excellent selectivity. HAp can also be used as a moisture-sensitive material. Modification by doping metal ions to improve the conductivity is a potential way to improve the humidity sensitivity of HAp. In addition, HAp has also been reported in photo, magnetic and thermal sensing applications. Firstly, we review the basic microstructure, properties and synthesis methods of HAp briefly. Then we mainly focus on the research progress of HAp and its composite in the fields of gas sensing, ion sensing, biosensing and humidity sensing. Finally, the research direction of HAp as sen-sing materials in the future is prospected.
|
Published:
Online: 2022-10-26
|
|
Fund:Hunan Provincial Natural Science Foundation of China (2019JJ50797). |
|
|
1 Jiao H, Zhao K, Shi R, et al. Journal of Materials Engineering, 2020, 48(1), 136(in Chinese). 焦华, 赵康, 石蕊, 等. 材料工程, 2020, 48(1), 136. 2 Zou X Y, Zhao Y B, Zhang Z J. Chemical Research, 2019, 30(4), 404(in Chinese). 邹雪艳, 赵彦保, 张治军. 化学研究, 2019, 30(4), 404. 3 Huang J Q, Zheng W S, Yan C Y, et al. Petrochemical Industry Techno-logy, 2019, 26(9), 352(in Chinese). 黄嘉琪, 郑炜山, 颜聪颖, 等. 石化技术, 2019, 26(9), 352. 4 Huang L Q, Wei Y H. China Synthetic Fiber Industry, 2020, 43(2), 49(in Chinese). 黄龙全, 韦永慧. 合成纤维工业, 2020, 43(2), 49. 5 Tan M S, Yang Z J, Yao N, et al. Hans Journal of Nanotechnology, 2019, 9(1), 32(in Chinese). 谭敏斯, 杨志杰, 姚宁, 等. 纳米技术, 2019, 9(1), 32. 6 Zou X Y, Zhao Y B, Zhang Z J. Chinese Journal of Inorganic Chemistry, 2020, 36(4), 747. 7 Li F. Synthesis of metal oxide semiconductor core-shell nanofibers and its application in gas sensitive. Ph.D. Thesis, Jilin University, China, 2018(in Chinese). 李峰. 金属氧化物半导体核壳纳米纤维的构筑及其气敏特性的研究. 博士学位论文, 吉林大学, 2018. 8 Ren W, Cao X Y, Feng L Y, et al. Bulletin of the Chinese Ceramic Society, 2002, 21(1), 38(in Chinese). 任卫, 曹献英, 冯凌云, 等. 硅酸盐通报, 2002, 21(1), 38. 9 Fihri A, Len C, Varma R S, et al. Coordination Chemistry Reviews, 2017, 347, 48. 10 Li H X, Liu Y, Tan Y N, et al. New Journal of Chemistry, 2015, 39(5), 3865. 11 Liu C, Hu W, Li J L, et al. China Environmental Science, 2014, 34(1), 58(in Chinese). 刘成, 胡伟, 李俊林, 等. 中国环境科学, 2014, 34(1), 58. 12 Liu X M, He D Y, Zhou Z, et al. Materials Reports B:Research Papers, 2019, 33(5), 1634(in Chinese). 刘晓梅, 贺定勇, 周正, 等. 材料导报:研究篇, 2019, 33(5), 1634. 13 Zhao S, Zhang X B, Zheng J F. Shandong Ceramics, 2019, 42(5), 3(in Chinese). 赵帅, 张新宝, 郑金峰. 山东陶瓷, 2019, 42(5), 3. 14 Liao C Y. Molecular simulations of protein adsorption on hydroxyapatite. Ph.D. Thesis, South China University of Technology, China, 2014(in Chinese). 廖晨伊. 蛋白质在羟基磷灰石表面吸附的分子模拟研究. 博士学位论文, 华南理工大学, 2014. 15 Qi M L, He K, Huang Z N, et al. JOM, 2017, 69(8), 1354. 16 Shavandi A, Bekhit A, Sun Z F, et al. Journal of Biomimetics Biomate-rials and Biomedical Engineering, 2015, 25, 98. 17 Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomaterialia, 2013, 9(8), 7591. 18 Haider A, Haider S, Han S S, et al. RSC Advances, 2017, 7(13), 7442. 19 Pu′ad N, Koshy P, Abdullah H Z, et al. Heliyon, DOI:10.1016/j.he-liyon.2019.e01588. 20 Yang Y S, Wu Q Z, Wang M, et al. Crystal Growth & Design, 2014, 14(9), 4864. 21 Liu Y K, Hou D D, Wang G H. Materials Chemistry and Physics, 2004, 86(1), 69. 22 Chen C Y. Study on synthesis methods of nano-hydroxyapatite and its composites. Master’s Thesis, Beijing University of Chemical Technology, China, 2019(in Chinese). 陈春雨. 纳米羟基磷灰石及其复合材料制备方法的研究. 硕士学位论文, 北京化工大学, 2019. 23 Sun Y G, An S, Qiao J J, et al. Journal of Synthetic Crystals, 2018, 47(4), 727(in Chinese). 孙义高, 安帅, 乔军杰, 等. 人工晶体学报, 2018, 47(4), 727. 24 Gu Y W, Li Z H, Sun M X, et al. Chemistry Select, 2019, 4(43), 12643. 25 Sabu U, Logesh G, Rashad M, et al. Ceramics International, 2019, 45(6), 6718. 26 Rasskazova L A, Korotchenko N M, Zeer G M. Russian Journal of Applied Chemistry, 2013, 86(5), 691. 27 Wang L L, Wang X F, Jiang H T. Journal of Ceramic Processing Research, 2015, 16(4), 376. 28 Kanchana P, Sekar C. Materials Science & Engineering C-Materials for Biological Applications, 2014, 42, 601. 29 Zhang Y. Synthesis of hydroxyapatite nano-crystal agglomerates by template-assisted biomineralization and its electrochemical sensing capability. Ph.D. Thesis, Central South University, China, 2012(in Chinese). 张莹. 基于模板辅助—仿生矿化机理制备羟基磷灰石纳米晶簇及其电化学传感性能研究. 博士学位论文, 中南大学, 2012. 30 Zhou W C. Fabrication and application of sensitive biosensor based on hydroxyapatite nanowires/reduced graphene oxide/gold nanoparticle composite. Master’s Thesis, Zhejiang Sci-Tech University, China, 2018(in Chinese). 周文翠. 羟基磷灰石纳米线/还原氧化石墨烯/纳米金复合材料基生物传感器的制备及应用研究. 硕士学位论文, 浙江理工大学, 2018. 31 Li H X. Synthesis and gas sensing properties of tubular hydroxyapatite and its composites. Master’s Thesis, Central South University, China, 2012(in Chinese). 李会霞. 管状羟基磷灰石及其复合物的制备与气敏性能研究. 硕士学位论文, 中南大学, 2016. 32 Cui Z Y, Luo D D, Feng C. et al. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2019, 41(1), 49(in Chinese). 崔正阳, 罗丹丹, 冯翠, 等. 浙江理工大学学报(自然科学版), 2019, 41(1), 49. 33 Lu L M. Construction and the application of electrochemical biosensor based on novel nanoscaled hybrid materials. Ph.D. Thesis, Hunan University, China, 2011(in Chinese). 卢丽敏. 基于新型纳米复合材料电化学生物传感器的构建及其分析应用. 博士学位论文, 湖南大学, 2011. 34 Bharath G, Madhu R, Chen S M, et al. Journal of Materials Chemistry B, 2015, 3(7), 1360. 35 Tran H V, Huynh C D, Le T D, et al. Electronic Materials Letters, 2020, 16(4), 396. 36 Ajab H, Dennis J O, Abdullah M A. International Journal of Biological Macromolecules, 2018, 113, 376. 37 Alam M K, Rahman M M, Elzwawy A, et al. Electrochimica Acta, 2017, 241, 353. 38 Zhang Q. Research on the synthesis of hydroxyapatite-graphene compo-sites and its gas sensing property. Master’s Thesis, Central South University, China, 2014(in Chinese). 张青. 羟基磷灰石-石墨烯复合物的制备及其气敏性能研究. 硕士学位论文, 中南大学, 2014. 39 Sun M X, Li Z H, Wu S, et al. Electrochimica Acta, 2018, 283, 1223. 40 Kanchana P, Lavanya N, Sekar C. Materials Science & Engineering C-Materials for Biological Applications, 2014, 35, 85. 41 Kanchana P, Sudhan N, Anandhakumar S, et al. RSC Advances, 2015, 5(84), 68587. 42 Wang L D. Electrochemical detection of transgenic insect-resistant BT protein based on hydroxyapatite modified electrode. Master’s Thesis, Huazhong Agricultural University, China, 2019(in Chinese). 王柳丁. 羟基磷灰石修饰电极应用于电化学检测转基因抗虫BT蛋白的研究. 硕士学位论文, 华中农业大学, 2019. 43 Bunkoed O, Donkhampa P, Nurerk P. Microchemical Journal, DOI: 10.1016/j.microc.2020.105127. 44 Van H N, Vu N H, Pham V H, et al. Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2020.154288. 45 Horvath B, Rigo M, Guba S, et al. Heliyon, DOI: 10.1016/j.he-liyon.2019.e01507. 46 Chen F F, Zhu Y J, Chen F, et al. ACS Nano, 2018, 12(4), 3159. 47 Ignjatovic N L, Mancic L, Vukovic M, et al. Scientific Reports, DOI: 10.1038/s41598-019-52885-0. 48 Chen C L, He J B, Liu W, et al. Sensor World, 2004, 10(4), 11(in Chinese). 陈长伦, 何建波, 刘伟, 等. 传感器世界, 2004, 10(4), 11. 49 Li G W, Lu J M, Qin D Z, et al. Chemical Industry and Engineering Progress, 2013(10), 2409(in Chinese). 李广伟, 鲁俊民, 秦东振, 等. 化工进展, 2013(10), 2409. 50 Li Y, Fu J Y, Hou Y C. Science Technology and Engineering, 2018, 18(3), 132(in Chinese). 李颖, 付金宇, 侯永超. 科学技术与工程, 2018, 18(3), 132. 51 Wang Y Y, Qin H, Yang Y C, et al. Transducer and Microsystem Technologies, 2018, 37(11), 87(in Chinese). 王洋洋, 秦浩, 杨永超, 等. 传感器与微系统, 2018, 37(11), 87. 52 Zhang Z Y. Synthesize of semiconductor metal oxide nanomaterials and their gas-sensing applications. Ph.D. Thesis, Zhejiang University, China, 2018(in Chinese). 张子悦. 金属氧化物半导体纳米材料的制备及其气敏传感性能的研究. 博士学位论文, 浙江大学, 2018. 53 Dong X C. Gas sensitivity and simulation studies on Au-deposited and nitrogen-doped TiO2 nanotubes detecting SF6 decomposed components. Master’s Thesis, Chongqing University, China, 2017(in Chinese). 董星辰. 金沉积及氮掺杂二氧化钛纳米管检测SF6分解组分的气敏响应特性研究. 硕士学位论文, 重庆大学, 2017. 54 Zhang D X. The study on zirconia NO2 sensor. Master’s Thesis, Ningbo University, China, 2009(in Chinese). 章东兴. 氧化锆基NO2传感器的研究. 硕士学位论文, 宁波大学, 2009. 55 Tan Y N, Liu Y J, Luo S Z, et al. Advances in Chemical Engineering, Open Access Ebooks, USA, 2019. 56 Mene R U, Mahabole M P, Aiyer R C, et al. The Open Applied Physics Journal, 2010,3, 10. 57 Mene R U, Mahabole M P, Sharma R, et al. Vacuum, 2011, 86(1), 66. 58 Khairnar R S, Mene R U, Munde S G, et al. In: 4th Nanoscience and Nanotechnology Symposium. Indonesia, 2011. 59 Mene R U, Mahabole M P, Khairnar R S. Radiation Physics and Chemistry, 2011, 80(6), 682. 60 Mene R U, Mahabole M P, Mohite K C, et al. Materials Research Bulletin, 2014, 50, 227. 61 Mene R U, Mahabole M P, Mohite K C, et al. Journal of Alloys and Compounds, 2014, 584, 487. 62 Narwade V N, Anjum S R, Kokol V, et al. Cellulose, 2019, 26(5), 3325. 63 Mahabole M P, Mene R U, Khairnar R S. Advanced Materials Letters, 2013, 4(1), 46. 64 Sudhan N, Lavanya N, Leonardi S G, et al. Sensors (Basel), DOI: 10.3390/s19153437. 65 Taha S, Begum S, Narwade V N, et al. Materials Chemistry and Physics, DOI: 10.1016/j.matchemphys.2019.122228. 66 Khairnar R S, Anjum S R, Mahabole M P. International Journal of Engineering Science and Innovative Technology, 2014, 3(3), 253. 67 Anjum S R, Khairnar R S. Sensors & Transducers, 2016, 206(11), 1. 68 Anjum S R, Khairnar R S. Sensing and Imaging, DOI: 10.1007/s11220-016-0139-2. 69 Anjum S R, Narwade V N, Bogle K A, et al. Nano-Structures & Nano-Objects, 2018, 14, 98. 70 Luo L L, Liu Y, Tan Y N, et al. Journal of Central South University, 2016, 23(1), 18. 71 Tan Y N, Li H X, Liu Y, et al. RSC Advances, DOI: 10.1039/c6ra12334a. 72 Anjum S R, Khairnar R S. In: the Seventh International Conference on Sensor Device Technologies and Applications. Nice, 2016, pp. 48. 73 Li P F, Yao A H, Zhou T, et al. Journal of Materials Science & Techno-logy, 2013, 29(11), 1104. 74 Safavi A, Sorouri M, Khanipour P. Electroanalysis, 2014, 26(2), 359. 75 Ajab H, Khan A A A, Dennis J O, et al. In: 3rd International Confe-rence on Process Engineering and Advanced Materials. Kuala Lumpur, 2014, pp.813. 76 Gao F, Gao N, Nishitani A, et al. Journal of Electroanalytical Chemistry, 2016, 775, 212. 77 Kaur B, Srivastava R, Satpati B. New Journal of Chemistry, 2015, 39(7), 5137. 78 Ren H Y. Studies and applications of the separation and preconcentration of trace Pb,Cr,Cd with nanometer-size Si-HAp and determination by atomic spectrometry. Master’s Thesis, Xiangtan University, China, 2010(in Chinese). 任红英. 纳米Si-HAP分离富集-原子吸收法测定痕量铅、铬、镉的研究与应用. 硕士学位论文, 湘潭大学, 2010. 79 Lavanya N, Sudhan N, Kanchana P, et al. RSC Advances, 2015, 5(65), 52703. 80 Zhang Y, Liu Y, Ji X, et al. Materials Letters, 2012, 78, 120. 81 Zhu Q Y, Li L, Chen X L. Journal of Hygiene Research, 2019, 48(3), 512(in Chinese). 朱蔷云, 李伦, 陈雪岚. 卫生研究, 2019, 48(3), 512. 82 Chen Y, Zhou W C, Ma J H, et al. Microscopy Research and Technique, 2020, 83(3), 268. 83 Kanchana P, Navaneethan M, Sekar C. Materials Science and Enginee-ring: B, 2017, 226, 132. 84 Zhang Y, Liu Y, Ji X B, et al. Journal of Materials Chemistry, 2011, 21(38), 14428. 85 Zhang Y, Zhang W, Zhang Q, et al. Analyst, 2014, 139(21), 5362. 86 Tagaya M, Ikoma T, Hanagata N, et al. In: 26th International Japan-Korea Seminar on Ceramics. Tsukuba, 2009. 87 Prongmanee W, Alam I, Asanithi P. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 415. 88 Kanchana P, Radhakrishnan S, Navaneethan M, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(6), 6185. 89 Yang Z P, Shang X G, Zhang C J, et al. Sensors and Actuators B: Che-mical, 2014, 201, 167. 90 Hasna K, Kumar S S, Komath M, et al. Physical Chemistry Chemical Physics, 2013, 15(21), 8106. 91 Jiang W T, Tian D Z, Zhang L, et al. Microchimica Acta, 2017, 184(11), 4375. 92 Erdem A, Congur G. Electroanalysis, 2018, 30(1), 67. 93 Lyu L L, Wei X B, Wang J. In: The 13th National Conference on Electroanalytical Chemistry. Nanchang, China, 2017(in Chinese). 吕刘林, 魏徐兵, 王军. 第十三届全国电分析化学学术会议. 南昌, 2017. 94 Sun J. Study on non-enzymatic glucose biosensor based on hydroxyapatite. Master’s Thesis, Northeastern University, China, 2015(in Chinese). 孙君. 羟基磷灰石基无酶葡萄糖生物传感器的研究. 硕士学位论文, 东北大学, 2015. 95 Jiang Y Y, Liu H Y, Qi X, et al. Chemistry Select, 2018, 3(9), 2542. 96 Li J H, Kuang D Z, Feng Y L, et al. Microchimica Acta, 2011, 176(1-2), 73. 97 Dai Y X, Cai Y Y, Zhao Y F, et al. Biosens Bioelectron, 2011, 28(1), 112. 98 Ribeiro T P, Monteiro F J, Laranjeira M S. Ceramics International, 2020, 46(10), 16590. 99 Stanca S E, Matthaus C, Neugebauer U, et al. Nanomedicine, 2015, 11(7), 1831. 100 Ma S S, Liu Y, Yan L Y. Technology Wind, 2018(30), 11(in Chinese). 麻姗姗, 柳钰, 燕丽颖. 科技风, 2018(30), 11. 101 Wang R. Study of resistive-type humidity sensor based on several mesoporous materials. Ph.D. Thesis, Jilin University, China, 2010(in Chinese). 王蕊. 基于几种介孔结构材料的电阻型湿度传感器的性能研究. 博士学位论文, 吉林大学, 2010. 102 Shen J Q, Ren Y S, Wang R L, et al. Journal of Ceramics, 1997(1), 1(in Chinese). 沈君权, 任雅姗, 王瑞莉, 等. 陶瓷学报, 1997(1), 1. 103 Szalaj U, Swiderska-Sroda A, Chodara A, et al. Nanomaterials (Basel), DOI: 10.3390/nano9071005. 104 Shi Y B, Chen B J, Pu L, et al. Sensor World, 2001(3), 11(in Chinese). 施云波, 陈宝军, 浦龙, 等. 传感器世界, 2001(3), 11. 105 Gu Y W. Study on humidity sensitivity of hydroxyapatite. Master’s Thesis, Jilin University, China, 2020(in Chinese). 顾煜炜. 羟基磷灰石的湿敏性能研究. 硕士学位论文, 吉林大学, 2020. 106 Wang Y Y, Wang T, Qi Y. Bulletin of the Chinese Ceramic Society, 2014, 33(5), 1146(in Chinese). 王阳阳, 汪涛, 祁燕. 硅酸盐通报, 2014, 33(5), 1146. 107 Pan X G, Peng X Z, Li B R. Journal Huazhong Central China University of Science and Tedimelogy, 2014(3), 13(in Chinese). 潘晓光, 彭贤柱, 李标荣. 华中工学院学报, 2014(3), 13. 108 Dai Y. Journal of Dalian Institute of Light Inoustry, 1998, 17(3), 3(in Chinese). 戴怡. 大连轻工业学院学报, 1998, 17(3), 3. 109 Wang Y, Wang X R, Liu B L. Journal of Changchun Institute of Optics and Fine Mechanics, 2002(4), 67(in Chinese). 王艳, 王学荣, 刘博林. 长春理工大学学报, 2002(4), 67. 110 Owada H, Yamashita K, Umegaki T, et al. Solid State Ionics, 1989, 35(3), 401. 111 Kobune M, Iida H, Sorai Y, et al. Materials Science Research International, 1999, 5(2), 116. 112 Tudorache F, Petrila I, Popa K, et al. Applied Surface Science, 2014, 303, 175. |
|
|
|