POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Progress in Palladium Catalysts for Acetylene Semi-Hydrogenation |
LIU Xin, HUANG Liang, ZHU Qing, LI Xiaojian, GUO Junyan, ZHANG Haijun*
|
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
|
|
Abstract The existence of trace acetylene in ethylene produced by naphtha cracking could poison the catalyst of ethylene polymerization, resulting in the deterioration of polymer quality. Selective catalytic semi-hydrogenation can effectively remove trace acetylene from ethylene rich flow, and palladium with excellent hydrogen dissociation and carbon-carbon triple bond affinity is recognized as the most efficient and promising catalyst for acetylene semi hydrogenation. The flaw of palladium is its high proneness to transform ethylene to ethane due to its poor selectivity for the former. Hence considerable academic and engineering efforts have been made, on the basis of a lot of modification methods, including adjusting the microstructure and dispersion of palladium catalysts, forming alloys with other metals, introducing catalyst promoters and optimizing supports. In this paper, the latest research progress of different palladium catalysts in semi-hydrogenation of acetylene is reviewed. The effects of the above-mentioned modification methods on the catalytic performance of palladium are summarized, and the future research directions are also prospected.
|
Published:
Online: 2022-10-26
|
|
Fund:National Natural Science Foundation of China (52072274) . |
|
|
1 Gonçalves L P L, Wang J, Vinati S, et al. International Journal of Hydrogen Energy, 2020, 45(2), 1283. 2 Song Y, Laursen S. Journal of Catalysis, 2019, 372, 151. 3 Zhang R G, Zhang J, Jiang Z, et al. Chemical Engineering Journal, 2018, 351, 732. 4 Zhang R, Zhao B, He L, et al. Physical Chemistry Chemical Physics, 2018, 20(25), 17487. 5 Wei S J, Li A, Liu J C, et al. Nature Nanotechnology, 2018, 13(9), 856. 6 Xu L, Stangland E E, Mavrikakis M. Journal of Catalysis, 2018, 362, 18. 7 Liu S, Niu Y, Wang Y, et al. Chemical Communications, 2020, 56, 6372. 8 Palgunadi J, Kim H S, Lee J M, et al. Chemical Engineering and Processing, 2010, 49(2), 192. 9 Li K, Lyu T T, He J Y, et al. Frontiers of Chemical Science and Engineering, 2020, 14(6), 929. 10 Yusa H, Kikuchi M, Tsuchiya H, et al. Nuclear Engineering and Design, 1977, 41(3), 437. 11 Yang L N, Guo Y S, Long J, et al. Chemical Communications, 2019, 55(97), 14693. 12 Lu Y, Feng X, Takale B S, et al. ACS Catalysis, 2017, 7(12), 8296. 13 Zhou S Z, 35 L H, Xu Z, et al. RSC Advances, 2020, 10(4), 1937. 14 Jovovi J, Majstorovi G L. Contributions to Plasma Physics, 2019, 59(7), 201800147. 15 Vignola E, Steinmann S N, Farra A A, et al. ACS Catalysis, 2018, 8(3), 1662. 16 Polanyi M, Szabo A L. Transactions of the Faraday Society, 1934, 30, 508. 17 Gong W B, Yuan Q L, Chen C, et al. Advanced Materials, 2019, 31(49), 1906051. 18 Rao D M, Sun T, Yang Y S, et al. Physical Chemistry Chemical Physics, 2019, 21(3), 1384. 19 Feng Q, Zhao S, Wang Y, et al. Journal of the American Chemical Society, 2017, 139(21), 7294. 20 Zhou S Q, Shang L, Zhao Y X, et al. Advanced Materials, 2019, 31(18), 1900509. 21 Kitchin J R, Norskov J K, Barteau M A, et al. Physical Review Letters, 2004, 93(15), 156801. 22 Li X T, Chen L, Wei G F, et al. ACS Catalysis, 2020, 10(17), 9694. 23 Matselko O, Zimmermann R R, Ormeci A, et al. Journal of Physical Chemistry C, 2018, 122(38), 21891. 24 Teschner D, Borsodi J, Wootsch A, et al. Science, 2008, 320(5872), 86. 25 Chen L Y, Gao Z Q, Li Y W. Catalysis Today, 2015, 245, 122. 26 Repo T, Klinga M, Pietikäinen P, et al. Macromolecules, 1997, 30(2), 171. 27 Zhang M H, Wu X Y, Huang X W, et al. Computational and Theoretical Chemistry, 2017, 1115, 253. 28 Guo Z L, Huang Q S, Luo S Z, et al. Topics in Catalysis, 2017, 60(12-14), 1. 29 Chung J Y, Kodama S, Sekiguchi H. Nanomaterials, 2019, 9(12), 1734. 30 Yarulin A E, Crespoquesada R M, Egorova E V, et al. Kinetics and Catalysis, 2012, 53(2), 253. 31 Kim S, Kim C, Lee J H, et al. Journal of Catalysis, 2013, 306(1), 146. 32 Pei G X, Liu X Y, Yang X F, et al. ACS Catalysis, 2017, 7(2), 1491. 33 Ma R, He Y F, Feng J T, et al. Journal of Catalysis, 2019, 369, 440. 34 Ding L B, Yi H, Zhang W H, et al. ACS Catalysis, 2016, 6(6), 3700. 35 Kang J H, Shin E W, Kim W J, et al. Catalysis Today, 2000, 63(2), 183. 36 Kim E, Shin E W, Bark C W, et al. Applied Catalysis A, 2014, 471(5), 80. 37 Hu M C, Wang X Q. Catalysis Today, 2016, 263, 98. 38 McCue A J, Guerrero-Ruiz A, Ramirez-Barria C, et al. Journal of Catalysis, 2017, 355, 40. 39 Cai W M, Zhang S, Lyu J, et al. ACS Catalysis, 2017, 7(6), 4083. 40 He Y F, Fan J X, Feng J T, et al. Journal of Catalysis, 2015, 331, 118. 41 Feng Q C, Zhao S, Xu Q, et al. Advanced Materials, 2019, 31(36), 1901024. 42 Wang S, Zhao Z J, Chang X, et al. Angewandte Chemie International Edition, 2019, 58(23), 7668. 43 Collins G, Schmidt M, Odwyer C, et al. Angewandte Chemie Internatio-nal Edition, 2014, 53(16), 4142. 44 Glyzdova D V, Afonasenko T N, Khramov E V, et al. Applied Catalysis A, 2020, 600, 117627. 45 Pei G X, Liu X Y, Wang A Q, et al. ACS Catalysis, 2015, 5(6), 3717. 46 Pei G X, Liu X Y, Wang A Q, et al. New Journal of Chemistry, 2014, 38(5), 2043. 47 Afonasenkoa T N, Temereva V L, Shlyapina D A, et al. Russian Journal of Applied Chemistry, 2019, 92(1), 110. 48 Huang X H, Xia Y J, Cao Y J, et al. Journal of Nanoparticle Research, 2017, 10(4), 1302. 49 Guan Q, Yang C, Wang S, et al. ACS Catalysis, 2019, 9(12), 11146. 50 You D J, Kim D H, De Lile J R, et al. Applied Catalysis A, 2018, 562, 250. 51 Hiroshi I, Ryotaro S, Taiki K, et al. Catalysts, 2015, 5(3), 1375. 52 Lu X Y, Zheng L, Zhang M S, et al. Electrochimica Acta, 2017, 238, 194. 53 Wallentin J, Jacobsson D, Osterhoff M, et al. ACS Catalysis, 2017, 17(7), 4143. 54 Wu P, Tan S, Moon J, et al. Nature Communications, 2020, 11(1), 3042. 55 Ahn I Y, Kim W J, Sang H M. Applied Catalysis A, 2006, 308, 75. 56 McKenna F M, Anderson J A. Journal of Catalysis, 2011, 281(2), 231. 57 Cecilia J A, Infantes-Molina A, Rodríguez-Castellón E, et al. Journal of Catalysis, 2009, 263(1), 4. 58 Cecilia J A, Infantes-Molina A, Rodríguez-Castellón E, et al. Applied Catalysis B, 2009, 92(1), 100. 59 Alvarado R L, Mormul J, Lejkowski M, et al. ACS Catalysis, 2017, 7(5), 3584. 60 Liu Y, McCue A J, Miao C, et al. Journal of Catalysis, 2018, 364, 406. 61 Wang K J, Chen Y Y, Li X S, et al. Catalysis Letters, 2008, 127(3-4), 392. 62 Kuwahara Y, Kango H, Yamashita H. ACS Catalysis, 2019, 9(3), 1993. 63 Khouya A A, Ba H, Baaziz W, et al. ACS Applied Nano Materials, 2021, 4(2), 2265. 64 Guan Z, Xue M F, Li Z Q, et al. Applied Surface Science, 2020, 503, 144142. 65 Xia S J, Fang L, Zhang X Q, et al. Applied Catalysis B, 2020, 272, 118949. 66 Liu P, Chang W T, Wu M Y, et al. Reaction Kinetics Mechanisms and Catalysis, 2015, 116(2), 409. 67 Wang J, Kuang Q, Su X, et al. ACS Applied Nano Materials, 2020, 4(1), 861. |
|
|
|