MATERIALS AND SUSTAINABLE DEVELOPMENT: MATERIALS REMANUFACTURING AND WASTE RECYCLING |
|
|
|
|
|
Orthogonal Test and Convolution Neural Network Prediction of Hybrid Fiber Recycled Brick Aggregate Concrete |
HUANG Wei1, GE Pei1, LI Meng2, XU Hongfei1
|
1 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 Shaanxi Provincial Natural Gas Co.,Ltd., Xi'an 710055, China |
|
|
Abstract Orthogonal test was used to study the influence of the three factors of recycled aggregate ratio, hybrid fiber ratio and the amount of water reducing agent on the mechanical properties sensitivity of hybrid fiber recycled brick aggregate concrete, and the experimental results were predicted and analyzed by convolution neural network. The results show that the ratio of recycled brick aggregate to recycled concrete aggregate has the greatest influence on the compressive and splitting tensile strength of hybrid fiber recycled brick aggregate concrete, followed by the amount of water reducing agent, and finally the ratio of glass fiber to polypropylene fibers. The compressive strength and splitting tensile strength increase with the decrease of the ratio of recycled brick aggregate to recycled concrete aggregate, and decrease with the increase of the amount of water reducing agent. The convolution neural network model established in this paper has high prediction accuracy and can be used to analyze the test results with variable parameters.
|
Published: 03 November 2021
|
|
Fund:National Natural Science Foundation of China(51978566), Key R & D Projects of Shaanxi Province-Key Industry Innovation Project(2020ZDLNY06-04). |
About author:: Wei Huang, doctor of engineering, professor and doctoral supervisor, mainly engaged in research on prefabricated buildings and green materials. At present, he has presided over five national level projects of National Natural Science Foundation of China; published 150 core journal papers, including 50 SCI and EI retrieval papers; won one second prize of national science and technology progress award and seven provincial and ministerial level science and technology progress award. |
|
|
1 Su H, Tang Y, Han G S, et al. China Concrete and Cement Products, 2014(10), 93(in Chinese). 宿辉, 唐阳, 韩国松, 等. 混凝土与水泥制品, 2014(10), 93. 2 Tian Z W. Analysis on the constructed wetlands' purification for Urban Lakes. Master's Thesis, Hebei University of Engineering, China, 2015(in Chinese). 田志伟. 富含砖粒的再生混凝土试验研究. 硕士学位论文, 河北工程大学, 2015. 3 Gao D Y, Jing J H, Zhou X. Acta Materiae Compositae Sinica, 2018, 35(12), 213(in Chinese). 高丹盈, 景嘉骅, 周潇. 复合材料学报, 2018, 35(12), 213. 4 Chen Z P, Zhou C H, Xu D Y, et al. Chinese Journal of Applied Mechanics, 2017, 34(1), 180(in Chinese). 陈宗平, 周春恒, 徐定一, 等. 应用力学学报, 2017, 34(1), 180. 5 Guo Y X, Li Q Y, Yue G B, et al. Journal of Building Structures, 2018, 39(4), 153(in Chinese). 郭远新, 李秋义, 岳公冰, 等. 建筑结构学报, 2018, 39(4), 153. 6 Xiao J Z, Du J T. Journal of Building Materials, 2008, 11(1), 111(in Chinese). 肖建庄, 杜江涛. 建筑材料学报, 2008, 11(1), 111. 7 Cui Z L, Lu S S, Wang Z H. Journal of Building Materials, 2012, 15(2), 264(in Chinese). 崔正龙, 路沙沙, 汪振双. 建筑材料学报, 2012, 15(2), 264. 8 Liang J F, He C F, Wang C C, et al. Concrete, 2014(4), 56(in Chinese). 梁炯丰, 何春锋, 王长诚, 等. 混凝土, 2014(4), 56. 9 Liu Z Z, Xiao B, Li X L, et al. Concrete, 2011(3), 79(in Chinese). 刘子振, 肖斌, 李晓龙, 等. 混凝土, 2011(3), 79. 10 Yang J, Du Q, Bao Y. Construction and Building Materials, 2011, 25(4), 1935. 11 Zhang S P, Zong L. Environmental Progress & Sustainable Energy, 2014, 33(4), 1283. 12 Nepomuceno M C S, Isidoro R A S, Catarino J P G. Construction & Building Materials, 2018, 165, 284. 13 Zhao A H, Zhai A L, Han J, et al. Journal of Water Resources and Architectural Engineering, 2014, 12(3), 98(in Chinese). 赵爱华, 翟爱良, 韩健, 等. 水利与建筑工程学报,2014,12(3),98. 14 Lawler J S, Zampini D, Shah S P. Journal of Materials in Civil Enginee-ring, 2005, 17(5), 595. 15 Afroughsabet V, Biolzi L, Ozbakkaloglu T. Journal of Materials Science, 2016, 51(14), 6517. 16 Banthia N, Gupta R. Materials and Structures, 2004, 37(10), 707. 17 Hossain K M A, Lachemi M, Sammour M, et al. Construction & Building Materials, 2013, 45, 20. 18 Tan H X, Fan Z F, Wang C P, et al. Natural Science Journal of Xiangtan University, 2011, 33(3), 65(in Chinese). 谭红霞, 范志甫, 汪超平, 等. 湘潭大学自然科学学报, 2011, 33(3), 65. 19 Chen A J, Wang J, Zhang Q. Concrete, 2009(1), 79(in Chinese). 陈爱玖, 王静, 章青. 混凝土, 2009(1), 79. 20 Zhou S C, Liu J J, Zhong X F, et al. Computer science, 2021, 48(7), 40(in Chinese). 周仕承, 刘京菊, 钟晓峰, 等. 计算机科学, 2021, 48(7), 40. 21 Rampasek L, Goldenberg A. Cell Systems, 2016, 2(1), 12. 22 Abadi M. ACM Sigplan Notices, 2016, 51(1), 1. 23 Han S J, Tan S Z. Computer Applications and Software, 2018, 35(6), 267(in Chinese). 韩山杰, 谈世哲. 计算机应用与软件, 2018, 35(6), 267. 24 Deng F, He Y, Zhou S, et al. Construction & Building Materials, 2018, 175, 562. 25 Huang M, Zhao Y R, Yuan J J, et al. Journal of Henan University of Engineering, 2019, 31(4), 22(in Chinese). 皇民, 赵玉如, 苑俊杰, 等. 河南工程学院学报(自然科学版), 2019, 31(4), 22. 26 Zhou S X, Sheng W, He S A. Concrete, 2019(7), 27(in Chinese). 周双喜, 盛伟, 何顺爱. 混凝土, 2019(7), 27. 27 Standard for test method of mechanical properties on ordinary concrete:GB/T50081-2002, China Architecture & Building Press, China, 2002(in Chinese). 普通混凝土力学性能试验方法标准:GB/T50081-2002, 中国建筑工业出版社, 2002. 28 Lv Z H, Cheng M, Jiang X S, et al. Shanxi Architecture, 2019, 45(11), 92(in Chinese). 吕志恒, 程铭, 蒋喜生, 等. 山西建筑, 2019, 45(11), 92. 29 Li Q. Architecture material, Tsinghua University Press, China, 2015(in Chinese). 李迁. 土木工程材料, 清华大学出版社, 2015. 30 Delgado A, Romero I. Environmental Modelling & Software, 2016, 77(3), 108. 31 Liu Z, Duanmu J S, Wang Q, et al. Mathematics Practice and Knowledge, 2005(10), 116(in Chinese). 刘智, 端木京顺, 王强, 等. 数学的实践与认识, 2005(10), 116. |
|
|
|