METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Laser-assisted Electrodeposition Technology and Its Application in the Preparation of Functional Materials |
YAO Yilin, ZHANG Jinqiu, YANG Peixia, AN Maozhong
|
Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Electrodeposition is one of the main methods to improve the performance of metal substrates, but currently the single deposition technology can no longer meet many requirements of functional materials preparation. So many new technologies have been developed to overcome the coating defects caused by conventional deposition processes. Laser-assisted electrodeposition (LAED) is a technology that introduces laser irradiation in an electrodeposition system to achieve high-speed, high-quality, and highly selective deposition. Compared with the traditional electrodeposition process, LAED technology has the advantages of fast deposition speed in the irradiated area, localized deposition and promotion of the formation of nanostructure. Although the current research on LAED technology is mostly based on the mechanism of action, the study on the mechanism of action is still not systematic due to the complicated process of laser and electrodeposition. Moreover, the laser equipment is relatively expensive and the deposition device requires a specific design. All of these lead to the incomplete process system of the technology and the limited application range. With the development of small high-performance lasers and various monitoring methods, this technology will have more advantages and wider applications. This paper summarizes the mechanism of LAED technology and the composition of the device. It analyzes the mechanism of action from three aspects which are the role of laser in solution, the deposition process of LAED and the synergistic effect of laser and electrodeposition. Different experimental conditions will greatly affect the deposition material. Therefore, by adjusting the relevant process parameters of the laser irradiation system and the electrodeposition system, coatings with different properties can be obtained. The representative applications of laser-assisted electrodeposition technology are mainly the preparation of maskless micropatterns, high-quality coatings and various types of microstructured functio-nal materials. This paper hopes to provide a certain reference for the device design of LAED technology and its application in various functional materials.
|
Published:
Online: 2022-02-10
|
|
|
|
1 An M Z. Electroplating theroy and technology, Harbin Institute of Tech-nology Press, China, 2004, pp. 1 (in Chinese). 安茂忠. 电镀理论与技术, 哈尔滨工业大学出版社, 2004, pp. 1. 2 Hu R, Su Y, Liu Y, et al. Nanoscale Research Letters, 2018, 13(1), 198. 3 Wei X X, Liang Z J, Cao Y. Electroplating & Finishing, 2006, 25(5), 7(in Chinese). 魏孝信, 梁志杰, 曹勇. 电镀与涂饰, 2006, 25(5), 7. 4 Tudela I, Zhang Y, Pal M, et al. Surface & Coatings Technology, 2014, 259, 363. 5 Kowalik R, Mech K, Kutyla D, et al. Magnetohydrodynamics, 2015, 51(2), 345. 6 Hussein H E M, Amari H, Macpherson J V. ACS Catalysis, 2017, 7, 7388. 7 Ozawa E, Kawakami Y, Seto T. Scripta Materialia, 2001, 44(8-9), 2279. 8 Onodera Y, Nunokawa T, Odawara O, et al. Journal of Luminescence, 2013, 137(9), 220. 9 Chen X, Wen R, Zhang L, et al. Plasmonics, 2014, 9(4), 945. 10 von Gutfeld R J, Tynan E E, Melcher R L, et al. Applied Physics Letters, 1979, 35(9), 651. 11 Bindra P. Journal of the Electrochemical Society, 1987, 134(11), 2893. 12 Puippe C J. Journal of the Electrochemical Society, 1981, 128(12), 2539. 13 Grishko V I, Duley W W, Gu Z H, et al. Electrochimica Acta, 2003, 47(4), 643. 14 Gupta R K, Singh A, Singh A, et al. Surface Engineering, 2017, 34(6), 446. 15 Jacobs J W M. Journal of the Electrochemical Society, 1987, 134, 2690. 16 Nguyen T T P, Tanabe R, Ito Y. Optics Laser Technology, 2018, 100, 21. 17 Qiang H, Han B, Chen J, et al. AIP Advances, 2017, 7(7), 075109. 18 von Gutfeld R J, Sheppard K G. Ibm Journal of Research and Development, 1998, 42(5), 639. 19 Ren B, Tian Z Q. Electrochemistry, 1996, 2(1), 9(in Chinese). 任斌, 田中群. 电化学, 1996, 2(1), 9. 20 Cho C H, Shin H S, Chu C N. Surface & Coatings Technology, 2013, 222, 15. 21 Zhang Z, Jiang Y, Huang L, et al. Laser Technology, 2017, 23(6), 1695. 22 Zha Q X. Introduction to electrode process dynamics, Science Press, China, 2002, pp. 256 (in Chinese). 查全性. 电极过程动力学导论, 科学出版社, 2002, pp.256. 23 Nie X, Zhang Z Y, Liu A, et al. Chinese Journal of Lasers, 2017, 44(4), 129(in Chinese). 聂昕, 张朝阳, 刘皋, 等. 中国激光, 2017, 44(4), 129. 24 Lin Q. Journal of the Electrochemical Society, 1992, 139(6), L62. 25 Cristescu C, Preda A, Popescu I, et al. Applied Surface Science, 1996, 106, 114. 26 Dai X R. International Journal of Electrochemical Science, 2017, 12(10), 9747. 27 Park J, Kim H. In: Conference Record of the 2010 5th IEEE Internatio-nal Conference on Nano/Micro Engineered and Molecular Systems. Xiamen, China, 2010, pp. 1120. 28 Zouari I, Pierre C, Lapicque F, et al. Journal of Applied Electrochemistry, 1993, 23(9), 863. 29 Wang X H, Zhou H J, Yu Z Z. Acta Chimica Sinica, 1993, 51(4), 341(in Chinese). 王旭红, 周焕钧, 郁祖湛. 化学学报, 1993, 51(4), 341. 30 Wee L M, Li L. Applied Surface Science, 2005, 247(1), 285. 31 Kruusing A. Optics & Lasers in Engineering, 2004, 41(2), 307. 32 Costa J M, de Almeida Neto A F. Ultrasonic Sonochemistry, 2020, 68, 105193. 33 Dobosz I, Kutyla D, Kac M, et al. Materials Science and Engineering:B, 2020, 262, 114795. 34 Zhang J Q, Li D, Chen M M,, et al. Chinese Journal of Chemical Phy-sics, 2014, 27, 704 35 Rassaei L, Vigil E, French R W, et al. Electrochimica Acta, 2009, 54(26), 6680. 36 Jin H C, Kim G M. International Journal of Precision Engineering & Ma-nufacturing, 2011, 12(1), 165. 37 Homma T, Kubo N, Osaka T. Electrochimica Acta, 2003, 48(20-22), 3115. 38 von Gutfeld R J, Gelchinski M H, Vigliotti D R, et al. Journal of the Electrochemical Society, 1984, 123(12), 1800. 39 von Gutfeld R J, Gelchinski M H, Romankiw L T. Los Angeles Technical Symposium, 1983, 385(6), 118. 40 Jin J, Teramae N, Haraguchi H. Chemistry Letter, 1993, 22(1), 101. 41 Wang L, Dong L, Li L, et al. Journal of Materials Science, 2017, 53(5), 3239. 42 Tu K T, Chung C K. Micro & Nano Letters, 2014, 9(10), 669. 43 Yoneyama H, Kawai K, Kuwabata S. Journal of the Electrochemical Society, 1988, 135(7), 1699. 44 Wang D P, Wang Z B, Zhang Z, et al. Applied Physics Letters, 2013, 102(8), 1. 45 Zhao L, Wang Z, Zhang J, et al. Applied Surface Science, 2015, 346, 574. 46 Zhao Q, Zhao J, Tao M, et al. Journal of Luminescence, 2019, 214, 116580. 47 Li Q, Li Y, Liu L, et al. Small, 2020, 16, 2005639. 48 Solieman A, Moharram A H, Aegerter M. Applied Surface Science, 2010, 256, 1925. 49 Fan F Y. The study of the hydrophobic mechanism and process on bionic coupling structure by both laser processing and electrodeposition. Master's Thesis, Changchun University of Science and Technology, China, 2018 (in Chinese). 范凤玉.激光电沉积复合制备仿生耦合结构疏水机理与工艺研究. 硕士学位论文, 长春理工大学, 2018. 50 Jia Y Q. The research on ware-corrosion mechanisms of electrodeposition and laser-electrodeposition Ni-based alloy and composite coatings. Master's Thesis, Hebei University of Technology,China, 2002 (in Chinese). 贾艳琴. 电沉积与激光电沉积Ni基合金及其复合镀层腐蚀磨损特性研究. 硕士学位论文, 河北工业大学, 2002. 51 Wang A B, Zhang Z Y, Xu K, et al. Electroplating & Finishing, 2020, 39(11), 691(in Chinese). 王安斌, 张朝阳, 徐坤, 等. 电镀与涂饰, 2020, 39(11), 691. 52 Zabludovsky V A, Tytarenko V V, Shtapenko E P. Transactions of the Institute of Metal Finishing, 2017, 95(6), 337. 53 Wu Y, Zhang Z, Xu K, et al. Applied Surface Science, 2020, 535, 147707. 54 Yan T, Liang Z J, Wang W L. Electroplating & Finishing, 2009, 28(10), 15 (in Chinese). 闫涛, 梁志杰, 王望龙. 电镀与涂饰, 2009, 28(10), 15. 55 Ye Y F, Wang J. Electroplating & Pollution Control, 1997, 17(6), 3 (in Chinese). 叶匀分, 王建. 电镀与环保, 1997, 17(6), 3. 56 Jiang Y J, Zhang Z Y, Huang L, et al. Laser Technology, 2016, 40(5), 660 (in Chinese). 姜雨佳, 张朝阳, 黄磊, 等. 激光技术, 2016, 40(5), 660. 57 Yan T, Liang Z J, Tan J, et al. China Surface Engineering, 2006, 19(2), 39 (in Chinese). 闫涛, 梁志杰, 谭俊, 等.中国表面工程, 2006, 19(2), 39. 58 Wang Y, Shen L, Jiang W, et al. Surface and Coatings Technology, 2018, 357, 957. 59 Amendola V, Meneghetti M. Physical Chemistry Chemical Physics, 2009, 11(20), 3805. 60 Chen S H, Lin J. Optics & Laser Technology, 2012, 44(1), 169. 61 Reetz M, Helbig W. Journal of the American Chemical Society, 1994, 116(16), 7401. 62 Liu Z K, Wang Y F, Liao Y L, et al. Nanotechnology, 2012, 23(12), 1. 63 Nishino J, Chatani S, Uotani Y, et al. Electrochemistry, 1999, 67(12), 1141. 64 Nian Q, Liu C R, Cheng G J. Manufacturing Letters, 2013, 1(1), 54. 65 Yu Z L, Meng X D, Hu Y, et al. Materials Research Bulletin, 2017, 93(9), 208. 66 Yu Z L, Meng X D, Yin M, et al. Chemical Physics Letters, 2018, 698, 181. |
|
|
|