INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Review of Vanadium-based Electrode Materials for Lithium Ion Batteries |
WANG Hao1, LI Junfeng1, MA Yue1, YANG Yanan1, ZHANG Peicong1, LAI Xuefei2, YUE Bo3
|
1 College of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China 2 School of Chemical Engineering, Sichuan University, Chengdu 610065, China 3 Sichuan Xinlixiang Energy Technology Co., Ltd., Shehong 629200, China |
|
|
Abstract To improve the performance of lithium ion batteries, the electrode materials are a key point. Vanadium has rich variable valence state, and the vanadium-based electrode materials are under a variety of structures with layered-structure, spinel and anti-spinel structure. Vanadium-based electrode materials have the properties of higher theoretical specific capacity, various synthesis methods and cost-effective. The application of vanadium-based compounds have attracted extensive attention in lithium ion battery electrode materials. However, it is still lack of a systematic summary of vanadium-based electrode materials. This paper reviews the structure and electrochemical performance of promising electrode mate-rials for lithium ion batteries of vanadium-based electrode materials, which mainly include vanadium oxide, lithium-free vanadate, lithium-containing vanadate and lithium vanadium phosphate. Methods for synthesis of vanadium-based electrode materials are summarized, including solid phase synthesis, sol-gel synthesis, hydrothermal synthesis, carbothermal reduction synthesis, and liquid phase precipitation synthesis. The methods to optimize the defects of vanadium electrode materials by controlling of nano-crystallization, morphology and composite are also concluded. Finally, an outlook on potential breakthroughs for vanadium-based electrode materials will be provided.
|
Published: 30 November 2021
|
|
Fund:Key Project of Sichuan Vanadium and Titanium Industry Development Research Center (2018VTCY-Z-01), the Major Project of Sichuan Provincial Department of Education (18ZA0062), and the Science and Technology Department Project of Sichuan Province (2019ZDZX0025). |
About author:: Hao Wang received his B.E. degree in material forming and control engineering from the Engineering & Technical College of Chengdu University of Technology in 2018. He is currently pursuing his master's degree at the College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, and under the supervision of professor Junfeng Li. His research has focused on amorphous cathode materials for lithium-ion batteries. Junfeng Li received his B.E. degree in inorganic nonmetallic materials from Sichuan University in 2000. He received his M.E. degree in materials from Chengdu University of Technology in 2005, and received his Ph.D. degree in biomedical engineering from Sichuan University in 2009. He is currently a full professor in Chengdu University of Technology. He is mainly engaged in research work related to the development and application of new materials. His research interests include rare earth luminescence and catalytic materials, lithium ion battery electrode materials, bone repair materials. In recent years, he has published 100 scientific research papers and applied for 30 national invention patents. |
|
|
1 Liu J R, Wang M, Yin D C, et al. Materials Reports, 2001(7), 32(in Chinese). 刘建睿, 王猛, 尹大川, 等.材料导报, 2001(7), 32. 2 Song F. Fujian Metallurgy, 2017, 46(1), 46(in Chinese). 宋阜. 福建冶金, 2017, 46(1), 46. 3 Liu L, Bao S S, He H, et al. Electronic Components and Materials, 2017, 36(12), 58. 刘磊, 包珊珊, 何欢, 等. 电子元件与材料, 2017, 36(12), 58. 4 Mai L Q, Zou Z G, Chen H Y. Materials Reports, 2000(7), 32(in Chinese). 麦立强, 邹正光, 陈寒元. 材料导报, 2000(7), 32. 5 Noh H J, Youn S, Yoon C S, et al. Journal of Power Sources, 2013, 233, 121. 6 Li W W, Pan Q X, Yao L, et al. Chinese Journal of Power Sources, 2013, 37(7), 1247 (in Chinese). 李伟伟, 潘全香, 姚路, 等. 电源技术, 2013, 37(7), 1247. 7 Hui Y, LI J, Zhang X G, et al. Journal of Materials Processing Technology, 2008, 207(1), 265. 8 Liu H, Wang Y, Wang K, et al. Journal of Power Sources, 2009, 192(2), 668. 9 Pan A, Zhang J G, Cao G, et al. Journal of Materials Chemistry, 2011, 21(27), 10077. 10 Ma H, Yuan Z, Cheng F, et al. Journal of Alloys & Compounds, 2011, 509(20), 6030. 11 Chen P, Zheng G, Guo G, et al. Journal of Alloys and Compounds, 2019, 784, 574. 12 Mo J, Zhang X M, Liu J J, et al. Chinese Journal of Chemistry, 2017, 35(12), 1789. 13 Leroux C, Nihoul G, Tendeloo G V. Physical Review B, 1998, 57(9), 5111. 14 Xia C, Lin Z, Zhou Y, et al. Advanced Materials, 2018, 30(40), 1803594.1. 15 Yang S, Gong Y, Liu Z, et al. Nano Letters, 2013, 13(4), 1596. 16 Franz R, Mitterer C. Surface & Coatings Technology, 2013, 228, 1. 17 Zhou J, Chen W, Yao H, et al. Journal of Molecular Science, 2001, 17(2), 71(in Chinese). 周静, 陈文, 姚欢, 等. 分子科学学报, 2001, 17(2), 71. 18 Chernova N A, Roppolo M, Dillon A C, et al. Journal of Materials Che-mistry, 2009, 19(17), 2526. 19 Liang X, Gao G H, Wu G M. Materials Reports, 2018, 32(1), 12(in Chinese). 梁兴, 高国华, 吴广明. 材料导报, 2018, 32(1), 12. 20 Liu Y C. Synthesis and electrochemical performance of lithium-ion battery cathode materials V6O13 and VO2(B). Master's Thesis, Guilin University of Technology, China, 2011 (in Chinese). 刘元春. 锂离子电池正极材料V6O13和VO2(B)的合成及其电化学性能研究. 硕士学位论文, 桂林理工大学, 2011. 21 Mcnulty D, Bbucley D N, O'dwyer C. ChemElectroChem, 2017, 4(8), 2037. 22 Li Z, Liu G, Guo M, et al. Electrochimica Acta, 2015, 173, 131. 23 Mohan V M, Murakami K, Chen W. Ionics, 2012, 18(6), 607. 24 Murrhy D, Christian P, Disalvo F, et al. Journal of the Electrochemical Society, 1979, 126(3), 497. 25 Zou Z G, Cheng H, He J Y, et al. Journal of Synthetic Crystals, 2013, 42(7), 001396(in Chinese). 邹正光, 程浩, 何金云, 等. 人工晶体学报, 2013, 42(7), 001396. 26 Zhang D, Li G S, Li B Y, et al. Journal of Alloys and Compounds, 2019, 789, 288. 27 Zeng S, Wang C, Li H, et al. Chemistry Letters, 2019, 48(4), 367. 28 Ma Y, Li W, Ji S, et al. Materials Research Express, 2017, 4(8), 085033. 29 Du L Y, Lin H J, Ma Z Y, et al. Journal of Power Sources, 2019, 424, 158. 30 Liu X, Cao Y, Zheng H, et al. Applied Surface Science, 2017, 394, 183. 31 Si Y C, Liu G N, Deng C H, et al. Journal of Electroanalytical Chemistry, 2017, 787, 19. 32 Ma H, Ji W Q, Yang X J, et al. Science in China(Series B:Chemistry), 2009, 39(9), 918(in Chinese). 马华, 冀伟强, 杨晓婧, 等. 中国科学(B辑:化学), 2009, 39(9), 918. 33 Fang Z, Fan F, Ding Z K, et al. Materials Research Bulletin, 2013, 48(4), 1737. 34 Yan N, Xu Y, Li H, et al. Materials Letters, 2016, 165, 223. 35 Zhu X, Jiang X, Xiao L, et al.Current Applied Physics, 2015, 15(4), 435. 36 Lu J S, Maggay I V B, Liu W R. Chemical Communications, 2018, 54(25), 3094. 37 Ma J, Ni S, Zhang J, et al. Physical Chemistry Chemical Physics, 2015, 17(33), 21442. 38 Prahasini P, Subadevi R, Wang F M, et al. Ionics, 2016, 22(3), 347. 39 Tang Y, Zhou J, Liu J, et al. International Journal of Electrochemical Science, 2013, 8(1), 1138. 40 Wu M Q, Yang J, Chen C, et al. New Journal of Chemistry, 2018, 42(7), 4881. 41 Patoux S, Richardson T J. Electrochemistry Communications, 2007, 9(3), 485. 42 Denis S, Baudrin E, Touboul M, et al. Journal of the Electrochemical Society, 1997, 144(12), 4099. 43 Fu X, Pu X, Wang H, et al. Physical Chemistry Chemical Physics, 2019, 21(13), 7009. 44 Wang W J, Wang H Y, Liu S Q, et al. Journal of Solid State Electrochemistry, 2012, 16(7), 2555. 45 Liu H D, Zhu Z Y, Yan Q H, et al. Nature, 2020, 585, 63. 46 Chen Z X, Xu F, Cao S A, et al. Small, 2017, 13(18), 1603148. 47 Li H, Liu X, Zhai T, et al. Advanced Energy Materials, 2013, 3(4), 428. 48 Han X Y, Tang W C, Yi Z H, et al. Journal of Applied Electrochemistry, 2008, 38(12), 1671. 49 Prakash D, Masuda Y, Sanjeeviraja C. Powder Technology, 2013, 235, 454. 50 Zhang M X, Xue Y H, Zhang Y X. Chemistry, 2012, 75(10), 935(in Chinese). 张孟雄, 薛迎辉, 张友祥. 化学通报, 2012, 75(10), 935. 51 Li M L, Yang X, Wang C Z, et al. Journal of Materials Chemistry A, 2015, 3(2), 586. 52 Benabed Y, Castro L, Penin N, et al. Chemistry of Materials, 2017, 29(21), 9292. 53 Jian X M. Synthesis and electrochemical performance of LiVO3 cathode materials for lithium ion batteries. Master's Thesis, Zhejiang University, China, 2014 (in Chinese). 简雪梅. 锂离子电池正极材料LiVO3的制备及其电化学性能. 硕士学位论文,浙江大学, 2014. 54 Huang Z, Cao L, Chen L, et al. The Journal of Physical Chemistry C, 2016, 120(6), 3242. 55 Jian X M, Tu J P, Qiao Y Q, et al. Journal of Power Sources, 2013, 236, 33. 56 Zhao H, Liu L, Zhang X, et al. Ceramics International, 2017, 43(2), 2343. 57 Wang H, Isobe J, Shimizu T, et al. Journal of Power Sources, 2017, 360, 150. 58 Zhang W, Feng L L, Zhang Y Y, et al. Battery Bimonthly, 2019, 49(2), 154(in Chinese). 张威, 冯莉莉, 张引引, 等. 电池, 2019, 49(2), 154. 59 Guo H, Liu L, Wei Q, et al. Electrochimica Acta, 2013, 94, 113. 60 Wang L, Deng L, Li Y, et al. Electrochimica Acta, 2018, 284, 366. 61 Sarbada V, Yedral L, Pshenova A, et al. Journal of Power Sources, 2020, 463, 9. 62 Zakharova G S, Thauer E, Wegener S A, et al. Journal of Solid State Electrochemistry, 2019, 23(7), 2205. 63 Liao C Y. Electrochemical mechanism study and doping modification of Li3VO4 anode for lithium ion batteries. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese). 廖超怡. 锂离子电池钒酸锂负极材料的电化学机理研究及其掺杂改性.硕士学位论文,华中科技大学, 2017. 64 Prakash D, Masuda Y, Sanjeeviraja C. Ionics, 2013, 19(1), 17. 65 Zhang C C, Wang Q S. Materials Reports, 2014, 28(S2), 216(in Chinese). 张昌春, 王启岁. 材料导报, 2014, 28(S2), 216. 66 Wickham D. Journal of Inorganic and Nuclear Chemistry, 1967, 29(10), 2545. 67 Cclemens O, Bauer M, Haberkorn R, et al. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(7-8), 1036. 68 Li Y Z, Ren M M, Wu Q D, et al. Chinese Journal of Power Sources, 2005, 29(2), 124(in Chinese). 李宇展, 任慢慢, 吴青端, 等. 电源技术, 2005, 29(2),124. 69 Zhu Y R, Zhou A N, Yi T F, et al. Chinese Journal of Power Sources, 2009, 33(6), 523 (in Chinese). 朱彦荣, 周安娜, 伊廷锋, 等. 电源技术, 2009, 33(6), 523. 70 Kuganathan N, Chroneos A. Scientific Reports, 2019, 9, 333. 71 Liu T T, Cui X M, Huang Z X, et al.Materials Reports, 2015, 29(S2), 242(in Chinese). 刘甜甜, 崔旭梅, 黄载春, 等. 材料导报, 2015, 29(S2), 242. 72 Nojima A, Sano A, Fujita S, et al. Journal of the Electrochemical Society, 2019, 166(15), A3731. 73 Barker J, Saidi M Y, Swoyer J L. Journal of the Electrochemical Society, 2003, 150(10), A1394. 74 Ma R, Shu J, Hou L, et al. Ionics, 2013, 19(5), 725. 75 Hou L, Shu J, Shui M, et al. Chinese Journal of Power Sources, 2011, 35(4), 465(in Chinese). 侯璐, 舒杰, 水淼, 等. 电源技术,2011, 35(4), 465. 76 Jeon M, Jin B S, KIM H S. Physica Status Solidia—Applications and Materials Science, 2018, 215(20), 1700935. 77 Rui X H, Yesibolati N, Li S R, et al. Solid State Ionics, 2011, 187(1), 58. 78 Li P, Wang P F, Yu H X, et al. Ceramics International, 2015, 41(9), 10766. 79 LI Y Z, Zhen Z, Ren M, et al. Electrochimica Acta, 2006, 51(28), 6498. 80 Zhong S K, Yin Z L, Wang Z X, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, S708. 81 Luo Y X, Shui M, Shu J. Results in Physics, 2019, 14, 7. 82 Jiang Y, Xu W W, Chen D D, et al. Electrochimica Acta, 2012, 85, 377. 83 Gaubicher J, Wurm C, Goward G, et al. Chemistry of Materials, 2000, 12(11), 3240. 84 Mao W F, Tang H Q, Tang Z Y, et al. Ecs Electrochemistry Letters, 2013, 2(7), A69. 85 Boivin E, Chotard J N, Menetrie M, et al. Journal of Physical Chemistry C, 2016, 120(46), 26187. 86 Petnikota S, Toh J J, Li J Y, et al. Chemelectrochem, 2019, 6(2), 493. 87 Bae K Y, Jung Y H, Cho S H, et al. Journal of Alloys and Compounds, 2019, 784, 704. 88 Liang Z, Lin Z, Zhao Y, et al. Journal of Power Sources, 2015, 274, 345. 89 Choi N S, Kim J S, Yin R Z, et al. Materials Chemistry and Physics, 2009, 116(2-3), 603. 90 Fu P, Zhao Y, Dong Y, et al. Electrochimica Acta, 2006, 52(3), 1003. 91 Zhou J, Zhao B, Song J, et al. Solid State Ionics, 2018, 322, 30. 92 Cao J Q, Wang X Y, Tang A, et al. Journal of Alloys and Compounds, 2009, 479(1-2), 875. 93 Zhang C, Jiang Q, Liu A, et al. Carbohydrate Polymers, 2020, 237, 116134. 94 Chen S, Duan H, Zhao L, et al. Journal of Power Sources, 2019, 413, 250. 95 Xiao L F, Zhao Y Q Z, Yin J, et al. Chemistry—A European Journal, 2010, 15(37), 9442. 96 Ren M M, Zhou Z, Gao X P. Journal of Applied Electrochemistry, 2010, 40(1), 209. 97 Wei C L, He W, Zhang X D, et al. Journal of Materials Science-Materials in Electronics, 2016, 27(11), 11814. 98 Liu S Q, Li S C, Huang K L, et al. Chinese Journal of Power Sources, 2007, 31(2), 123 (in Chinese). 刘素琴, 李世彩, 黄可龙,等. 电源技术, 2007, 31(2), 123. 99 Yan J, Yuan W, Xie H, et al. Materials Letters, 2012, 71, 1. 100 Channu V S R, Rambabu B, Kumari K, et al. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2015, 481, 314. 101 Jin X, Lei B B, Wang J, et al.Journal of Alloys and Compounds, 2016, 686, 227. 102 Zhou H Y, Zhu Y C, Qian Y T.Chinese Journal of Inorganic Chemistry, 2011, 27(7), 1393. 103 Sajid M M, Shad N A, Khan S B, et al.Journal of Alloys and Compounds, 2019, 775, 281. 104 Gan L H, Deng D R, Zhang Y J, et al.Journal of Materials Chemistry A, 2014, 2(8), 2461. 105 Zhang B, Han Y D, Zheng J C, et al. Journal of Power Sources, 2014, 264, 123. 106 Sun X C, Cui C J, Li X C.New Chemical Materials, 2015, 43(7), 145(in Chinese). 孙兴川, 崔朝军, 李现常. 化工新型材料, 2015, 43(7), 145. 107 Fey G T K, Huang D L.Electrochimica Acta, 1999, 45(1-2), 295. 108 Zeng L, Xiao F, Wang J, et al.Journal of Materials Chemistry, 2012, 22(28), 14284. 109 Slubowska W, Kwatek K, Nowniski J L.Solid State Ionics, 2018, 319, 266. 110 Barker J, Saidi M Y, Swoyer J L.Journal of the Electrochemical Society, 2003, 150(9), A1267. 111 Barker J, Saidi M Y, Swoyer J L.Journal of the Electrochemical Society, 2003, 150(6), A684. 112 Zhong S K, Zhao B, Li Y H, et al.Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(3), 343. 113 Feng J, Liu X, Zhang X, et al. Journal of the Electrochemical Society, 2009, 156(9), A768. 114 Si Y, Zhao L, Yu Z, et al.Materials Letters, 2012, 72(4), 145. 115 Fey G T K, Chen K S.Journal of Power Sources, 1999, 81, 467. 116 Xiao B, Zhang B, Tang L B, et al. Ceramics International, 2018, 44(13), 15044. 117 Choi S H, Kang Y C.Chemistry—A European Journal, 2013, 19(51), 17305. 118 Luo L, Fei Y, Chen K, et al.Journal of Alloys and Compounds, 2015, 649, 1019. 119 Xu X N, Niu F E, Wang C S, et al.Chemical Engineering Journal, 2019, 370, 606. 120 Liu Z M, Fan Y L, Peng W J, et al.Ceramics International, 2015, 41(3), 4267. 121 Chang C, Xiang J, Shi X, et al.Electrochimica Acta, 2008, 53(5), 2232. 122 Zhu C, Shu J, Wu X, et al.Journal of Electroanalytical Chemistry, 2015, 759, 184. 123 Wang C, Cao Y, Luo Z, et al.Chemical Engineering Journal, 2017, 307, 382. 124 Yuan J, Hu X, Chen J X, et al. Journal of Materials Chemistry A, 2019, 7(15), 9289. 125 He G, Li L, Manthiram A.Journal of Materials Chemistry A, 2015, 3(28), 14750. 126 Hua K, Li X, Fang D, et al.Ceramics International, 2018, 44(10), 11307. 127 Wang Y P, Nie Z W, Pan A Q, et al. Journal of Materials Chemistry A, 2018, 6(16), 6792. 128 Ghani F, Raza A, Kyung D, et al. Applied Surface Science, 2019, 497, 143718. 129 Sambandam B, Soundharrajan V, Mathew V, et al. Journal of Materials Chemistry A, 2016, 4(38), 14605. 130 Qin Z Z, Pei J, Chen G, et al.New Journal of Chemistry, 2017, 41(13), 5974. 131 Zhang Q, Pei J, Chen G, et al. Advanced Materials Interfaces, 2017, 4(13), 7. 132 Zhang S, Hu R, Liu L, et al.Materials Letters, 2014, 124, 57. 133 Luo L, Fei Y Q, Chen K, et al. Journal of Alloys and Compounds, 2015, 649, 1019. 134 Li N, Gong H X, Qian Y T.Chinese Journal of Chemical Physics, 2013, 26(5), 597. 135 Zhang X F, Kuhnel R S, Schroeder M, et al.Journal of Materials Che-mistry A, 2014, 2(42), 17906. 136 Xiong Z, Zhang G, Xiong J, et al.Materials Letters, 2013, 111, 214. 137 Tang Y X, Zhang Y Y, Deng J Y, et al. Angewandte Chemie-Internatio-nal Edition, 2014, 53(49), 13488. 138 Liu X, Li B K, Yao L, et al.Journal of Nanoscience and Nanotechnology, 2019, 19(7), 4052. 139 Fei H, Lin Y, Wei M.Journal of Colloid and Interface Science, 2014, 425, 1. 140 Zhou X W, He T L, Chen X, et al. Journal of Materials Science-Mate-rials in Electronics, 2017, 28(15), 11098. 141 Zhao H L, Gao H X, Li B Q, et al.Materials Letters, 2019, 252, 215. 142 Wang Y H, Liu H, Zhu D, et al.Transactions of Nonferrous Metals So-ciety of China, 2011, 21(6), 1303. 143 Ni S B, Ma J J, Zhang J C, et al.Journal of Power Sources, 2015, 282, 65. 144 Cao Y, Chai D, Luo Z, et al. Journal of Colloid and Interface Science, 2017, 498, 210. 145 Wang Z K, Shu J, Zhu Q C, et al. Journal of Power Sources, 2016, 307, 426. 146 Zhang S, Hou M, Hou L, et al.Chemical Physics Letters, 2016, 658, 203. 147 Chen Z H, Chen Q Y, Wang H Y, et al.Electrochemistry Communications, 2014, 46, 67. 148 Zhang C, Li H, Ping N, et al.RSC Advances, 2014, 4(73), 38791. 149 Li Y, Bai W Q, Wang D H, et al. Electrochimica Acta, 2015, 161, 252. 150 Zeng X Y, Tang Y K, Liu L, et al. Energy Technology, 2020, 8(3), 1901347. 151 Wang J, Li X, Wang Z, et al.Journal of Power Sources, 2014, 251, 325. 152 Park J S, Mahadi N B, Yashiro H, et al.ACS Applied Materials & Interfaces, 2016, 8(39), 25856. 153 Nagamine K, Honma T, Komatsu T.Journal of Power Sources, 2011, 196(22), 9618. 154 Kitajou A, Yoshida J, Nakanishi S, et al.Journal of Power Sources, 2013, 244, 658. 155 Zhao K N, Liu F N, Niu C J, et al.Advanced Science, 2015, 2(12), 7. 156 Yu L Q, Zhao S X, Wu X, et al.Journal of Alloys and Compounds, 2019, 810, 151938. 157 Mai L Q, Xu L, Han C H, et al. Nano letters, 2010, 10(11), 4750. 158 Wang S, Lu Z, Wang D, et al. Journal of Materials Chemistry, 2011, 21(17), 6365. |
|
|
|