Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1486-1495    https://doi.org/10.11896/j.issn.1005-023X.2018.09.013
  材料综述 |
导热铝合金及铝基复合材料的研究进展
吴孟武1,2,华 林1,2,周建新3,殷亚军3
1 武汉理工大学现代汽车零部件技术湖北省重点实验室,武汉 430070;
2 汽车零部件技术湖北省协同创新中心,武汉 430070;
3 华中科技大学材料成形与模具技术国家重点实验室,武汉 430074
Advances in Thermal Conductive Aluminum Alloys and Aluminum Matrix Composites
WU Mengwu1,2, HUA Lin1,2, ZHOU Jianxin3, YIN Yajun3
1 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology,Wuhan 430070;
2 Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan 430070;
3 State Key Laboratory of Materials Processing and Die &Mould Technology, Huazhong University of Science and Technology, Wuhan 430074
下载:  全 文 ( PDF ) ( 2262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金具有密度小、强度高、导电导热性好及加工简单等优点,基于这些综合性能的优势,其作为结构和散热材料广泛应用于汽车、电子及通讯等领域。然而随着系统及设备向着集成化、小型化、轻量化及高功率等方向发展,以铝为主体的金属材料的散热面临着严峻挑战。本文综述了国内外高导热铝合金及铝基复合材料的研究与开发现状,阐述了铝合金的导热机理以及合金成分和加工工艺等对铝合金导热性能的影响规律,分析了高硅铝、铝-碳化硅、铝-金刚石、铝-石墨片/碳纳米管等系列铝基复合材料的导热特性,展望了高导热铝合金及铝基复合材料研究存在的问题及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴孟武
华 林
周建新
殷亚军
关键词:  变形铝合金  铸造铝合金  铝基复合材料  热导率    
Abstract: With the advantages of low density, high strength, high electrical/thermal conductivity and ease of processing, aluminum alloys have gained extensive application to automotive, electronics and communication industries by serving as the structural and thermal-dissipation material. However, the thermal-dissipation ability of the metallic materials which mainly consist of aluminum confront severe challenges from the swift development of equipment toward integration, miniaturization, light weight and high po-wer. This paper reviews the research and development status of the aluminum alloys and aluminum matrix composites for thermal dissipation, provides elaborate descriptions about the thermal conductive mechanism of aluminum alloys, and the effects of alloy composition and processing technique on the product’s thermal conductivity, and moreover, analyzes the thermal characteristics of aluminum matrix composites such as Al-Si, Al-SiC, Al-diamond, Al-graphite flake/carbon nanotube, etc. Finally, we briefly summarize the unresolved issues and future development directions for this species of crucial materials for industry.
Key words:  wrought aluminum alloy    cast aluminum alloy    aluminum matrix composite    thermal conductivity
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TG132.3  
基金资助: 中央高校基本科研业务费专项资金项目(2017IVA036);新能源汽车科学与关键技术学科创新引智基地项目(B17034);材料成形与模具技术国家重点实验室开放课题研究基金项目(P2018-003)
通讯作者:  周建新:通信作者,男,1975年生,博士,教授,主要从事铸造工艺及其数值模拟研究 E-mail:zhoujianxin@hust.edu.cn   
作者简介:  吴孟武:男,1984年生,博士,高级工程师,主要从事铝、镁合金材料及成形工艺研究 E-mail:wumw@whut.edu.cn
引用本文:    
吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
WU Mengwu, HUA Lin, ZHOU Jianxin, YIN Yajun. Advances in Thermal Conductive Aluminum Alloys and Aluminum Matrix Composites. Materials Reports, 2018, 32(9): 1486-1495.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.013  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1486
1 Janicki M, Napieralski A. Modelling electronic circuit radiation coo-ling using analytical thermal model[J].Microelectronics Journal,2000,31(9-10):781.
2 Zweben C. Advances in high-performance thermal management materials—A review[J].Journal of Advanced Materials,2007,39(1):3.
3 Shaji M C, Ravikumar K K, Ravi M, et al. Development of a high strength cast aluminium alloy for possible automotive applications[J].Materials Science Forum,2013,765:54.
4 Hirsch J, Al-Samman T. Superior light metals by texture enginee-ring: Optimized aluminum and magnesium alloys for automotive applications[J].Acta Materialia,2013,61(3):818.
5 Yuan Wuhua, Liang Zhenyu. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor[J].Materials & Design,2011,32(8-9):4195.
6 Tzou G J, Tsao C C, Lin Y C. Improvement in the thermal conductivity of aluminum substrate for the desktop PC Central Processing Unit (CPU) by the Taguchi method[J].Experimental Thermal and Fluid Science,2010,34(6):706.
7 Huang Yaying. Effects of boron and erbium on microstructure and thermal conductivity of Al-Mg-Si alloy[D].Nanning:Guangxi University,2015(in Chinese).
黄雅莹. B和Er对Al-Mg-Si合金组织及导热性能的影响研究[D].南宁:广西大学,2015.
8 HuangYaying, Hu Zhiliu, Wang Junjun. Research progress on the aluminum alloy with high thermal conductivity[J].Applied Mecha-nics and Materials,2014,574:396.
9 Brandt R,Neuer G. Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature[J].International Journal of Thermophysics,2007,28(5):1429.
10 Mao Wenlong, Zhao Yukai, Wang Shuncheng, et al. Effects of grain refinement on fluidity, mechanical properties and thermal conducti-vity of as-cast Al-3.2Si-0.8Mg alloy[J].Materials Review,2016,30(Z1):85(in Chinese).
毛文龙,赵禹凯,王顺成,等.晶粒细化对铸造Al-3.2Si-0.8Mg合金流动性、力学性能和导热系数的影响[J].材料导报,2016,30(Z1):85.
11 Zhang Jianxin, Gao Aihua. Effects of heat treatment on thermal conductivity of Al-Mg-Si aluminum alloy[J].Special Casting & Nonferrous Alloys,2011,31(10):911(in Chinese).
张建新,高爱华.热处理工艺对Al-Mg-Si系合金导热性能的影响[J].特种铸造及有色合金,2011,31(10):911.
12 Cui Xiaoli, Wu Yuying, Liu Xiangfa, et al. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum[J].Materials & Design,2015,86:397.
13 Bakhtiyarov S I, Overfelt R A, Teodorescu S G. Electrical and thermal conductivity of A319 and A356 aluminum alloys[J].Journal of Materials Science,2001,36(19):4643.
14 Olafsson P, Sandstrom R, Karlsson A. Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys[J].Journal of Materials Science,1997,32(16):4383.
15 Tan Zhanqiu, Chen Zhizhong, Fan Genlian, et al. Effect of particle size on the thermal and mechanical properties of aluminum compo-sites reinforced with SiC and diamond[J].Materials & Design,2016,90:845.
16 Molina-Jorda J M. Design of composites for thermal management: Aluminum reinforced with diamond-containing bimodal particle mixtures[J].Composites Part A: Applied Science and Manufacturing,2015,70:45.
17 Molina-Jorda J M, Prieto R, Narciso J, et al. The effect of porosity on the thermal conductivity of Al-12wt.% Si/SiC composites[J].Scripta Materialia,2009,60(7):582.
18 Zhong Gu, Wu Shusen, Wan Li. Research development of electronic packaging materials with high SiCp or Si content[J].Materials Review,2008,22(2):13(in Chinese).
钟鼓,吴树森,万里.高SiCp或高Si含量电子封装材料研究进展[J].材料导报,2008,22(2):13.
19 Nie Junhui, Wei Shaohua, Jia Chengchang, et al. Microstructures and thermal properties of carbon nanotube reinforced aluminum matrix composites for thermal management applications[J].Powder Metallurgy Technology,2014,32(5):372(in Chinese).
聂俊辉,魏少华,贾成厂,等.热管理领域用碳纳米管/铝复合材料的组织与热学性能研究[J].粉末冶金技术,2014,32(5):372.
20 Chen Zhizhong, Tan Zhanqiu, Ji Gang, et al. Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites[J].Advanced Engineering Materials,2015,17(7):1076.
21 Lumley R N, Deeva N, Larsen R, et al. The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminum high pressure die castings[J].Metallurgical and Materials Transactions A,2013,44(2):1074.
22 Klemens P G, Williams R K. Thermal conductivity of metals and alloys[J].International Metals Reviews,1986,31(1):197.
23 Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors[J].Materials & Design,2006,27:821.
24 Rao Ke, Zhong Jianhua, Fu Qunqiang. The effects of rare earth on the electric and heat conductivity of 6063 aluminum alloy[J].Aluminium Fabrication,2002,25(6):22(in Chinese).
饶克,钟建华,傅群强.稀土对6063铝合金导电、导热性能的影响[J].铝加工,2002,25(6):22.
25 Zhang Shenghua, Zhang Bing, Xiao Yinguo. Effect of aging system on the heat conductivity and hardness of 6063 alloy[J].Aluminium Fabrication,2003,26(3):13(in Chinese).
张胜华,章冰,肖荫果.时效制度对6063合金导热性能和硬度的影响[J].铝加工,2003,26(3):13.
26 Gao Aihua, Wang Furong. Effect of Mg/Si mass ratio on microstructure and properties of 6063 alloy[J].Hot Working Technology,2012,41(16):23(in Chinese).
高爱华,王福荣.镁硅质量比对6063铝合金组织和性能的影响[J].热加工工艺,2012,41(16):23.
27 Zhong Jianhua, Zhang Jianxin, Rao Ke, et al. Approaches to improvement heat exchange of aluminum alloy[J].Foundry Technology,2003,24(6):519(in Chinese).
钟建华,张建新,饶克,等.提高铝合金导热性能的研究[J].铸造技术,2003,24(6):519.
28 Han Y, Shao D, Chen B A, et al. Effect of Mg/Si ratio on the microstructure and hardness-conductivity relationship of ultrafine-grained Al-Mg-Si alloys[J].Journal of Materials Science,2017,52(8):4445.
29 Zhao Q, Qian Z, Cui X, et al. Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy[J].Journal of Alloys and Compounds,2016,666:50.
30 Hu Zhiliu, Luo Fuqiu, Zhang Congcong, et al. Effect of extrusion temperature and extrusion ratio on thermal conductivity of 6063 aluminum alloy[J].Aluminium Fabrication,2011,34(5):30(in Chinese).
胡治流,罗付秋,张聪聪,等.挤压温度和挤压比对6063铝合金导热性能的影响[J].铝加工,2011,34(5):30.
31 Ji X, Zhang H, Luo S, et al. Microstructures and properties of Al-Mg-SI alloy overhead conductor by horizontal continuous casting and continuous extrusion forming process[J].Materials Science and Engineering:A,2016,649:128.
32 Lin G, Zhang Z, Wang H, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment[J].Materials Science and Engineering:A,2016,650:210.
33 Liu C H, Chen J, Lai Y X, et al. Enhancing electrical conductivity and strength in Al alloys by modification of conventional thermo-mechanical process[J].Materials & Design,2015,87:1.
34 Shin J S, Ko S H, Kim K T. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation[J].Journal of Alloys and Compounds,2015,644:673.
35 Chen J, Hung H, Wang C, et al. Thermal and electrical conductivity in Al-Si/Cu/Fe/Mg binary and ternary Al alloys[J].Journal of Materials Science,2015,50:5630.
36 Niu Yanping, Zhao Yukai, Wang Shuncheng, et al. Effects of Si content on casting fluidity, thermal conductivity and mechanical properties of Al-Si-Mg alloy[J].Foundry,2016,65(4):366(in Chinese).
牛艳萍,赵禹凯,王顺成,等.Si含量对Al-Si-Mg合金铸造流动性、热导率和力学性能的影响[J].铸造,2016,65(4):366.
37 Aksz S, Ocak Y, Mara N, et al. Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al-Cu alloys[J].Experimental Thermal and Fluid Science,2010,34(8):1507.
38 Mao Wenlong, Zhou Haitao, Wang Shuncheng, et al. Effects of Srmodification on fluidity, mechanical properties and thermal conductivity of as-cast Al-Si-Mg alloy[J].Foundry,2017,66(2):122(in Chinese).
毛文龙,周海涛,王顺成,等.Sr变质对Al-Si-Mg合金的流动性、力学性能和导热系数的影响[J].铸造,2017,66(2):122.
39 Chen J K, Hung H Y, Wang C F, et al. Effects of casting and heat treatment processes on the thermal conductivity of an Al-Si-Cu-Fe-Zn alloy[J].International Journal of Heat and Mass Transfer,2017,105:189.
40 Choi S W, Kim Y M, Lee K M, et al. The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al-Si-Cu-Mg foundry alloys[J].Journal of Alloys and Compounds,2014,617:654.
41 Lumley R N, Polmear I J, Groot H, et al. Thermal characteristics of heat-treated aluminum high-pressure die-castings[J].Scripta Materialia,2008,58(11):1006.
42 Li Linjun. Study on high thermal conductivity of 6063 aluminum alloy[D].Nanning:Guangxi University,2015(in Chinese).
李林君.高性能热传导6063铝合金材料的研究[D].南宁:广西大学,2015.
43 Kimura T, Nakamoto T, Mizuno M, et al. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting[J].Materials Science and Engineering:A,2017,682:593.
44 Balla V K, Bose S, Bandyopadhyay A. Laser surface modification of Al-4Cu-1Mg alloy for enhanced thermal conductivity[J].Optics and Lasers in Engineering,2009,47(6):651.
45 Falcon-Franco L, Rosales I, García-Villarreal S, et al. Synthesis of magnesium metallic matrix composites and the evaluation of aluminum nitride addition effect[J].Journal of Alloys and Compounds,2016,663:407.
46 Molina J M, Narciso J, Weber L, et al. Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution[J].Materials Science and Engineering:A,2008,480(1):483.
47 Jiang L, Wang P, Xiu Z, et al. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method[J].Materials Characterization,2015,106:346.
48 Xia Yang, Song Yueqing, Cui Shun, et al. Progress in thermal management materials[J].Materials Review,2008,22(1):4(in Chinese).
夏扬,宋月清,崔舜,等.热管理材料的研究进展[J].材料导报,2008,22(1):4.
49 Xie Lichuan, Peng Chaoqun, Wang Richu, et al. Research progress of high aluminum-silicon alloys in electronic packaging[J]. The Chinese Journal of Nonferrous Metals,2012, 22(9):2578(in Chinese).
解立川,彭超群,王日初,等.高硅铝合金电子封装材料研究进展[J].中国有色金属学报,2012,22(9):2578.
50 Tan Z, Chen Z, Fan G, et al. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond[J].Materials & Design,2016,90:845.
51 Xiu Ziyang, Zhang Qiang, Wu Gaohui, et al. Study on properties of high reinforcement-content aluminum matrix composite for electro-nic packages[J].Electronic Packaging,2006,6(2):16(in Chinese).
修子扬,张强,武高辉,等.高体积分数电子封装用铝基复合材料性能研究[J].电子与封装,2006,6(2):16.
52 Yang Fuliang, Gan Weiping, Chen Zhaoke. A few preparation met-hods and their delication mechanism for high-silicon aluminum alloy[J].Materials Review,2005,19(5):42(in Chinese).
杨伏良,甘卫平,陈招科.高硅铝合金几种常见制备方法及其细化机理[J].材料导报,2005,19(5):42.
53 Jacobson D M. Spray-formed silicon-aluminum[J].Advanced Mate-rials & Processes,2000,157(3):36.
54 Chien C W, Lee S L, Lin J C, et al. Effects of Sip size and volume fraction on properties of Al/Sip composites[J].Materials Letters,2002,52(4-5):334.
55 Xue C, Yu J K. Enhanced thermal transfer and bending strength of SiC/Al compo-site with controlled interfacial reaction[J].Materials & Design,2014,53:74.
56 Mizuuchi K, Inoue K, Agari Y, et al. Processing of Al/SiC compo-sites in continuous solid-liquid co-existent state by SPS and their thermal properties[J].Composites Part B:Engineering,2012,43(4):2012.
57 Chu K, Jia C, Liang X, et al. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance[J].Materials & Design,2009,30(10):4311.
58 Liang X, Jia C, Chu K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering[J].Journal of Composite Materials,2012,46(9):1127.
59 Liu Yongzheng. Research on the low-cost diamond/aluminium composites[J].Materials Review B:Research Papers,2013,27(2):8(in Chinese).
刘永正.低成本金刚石/铝复合材料的研究[J].材料导报:研究篇,2013,27(2):8.
60 Khalid F A, Beffort O, Klotz U E, et al. Microstructure and interfacial characteristics of aluminium-diamond composite materials[J].Diamond and Related Materials,2004,13(3):393.
61 Beffort O, Vaucher S, Khalid F A. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting)[J].Diamond and Related Materials,2004,13(10):1834.
62 Guo Caiyu. Research on preparation and properties of diamond/Al composites with high volume fraction of diamond[D].Beijing:University of Science and Technology Beijing, 2016(in Chinese).
郭彩玉.高体积分数金刚石/铝复合材料的制备与性能研究[D].北京:北京科技大学,2016.
63 Zhang Chao, Zhang Yang, Liu Na, et al. Advanced forming techno-logy for the high thermally conductive Al/diamond composites and its heat conducting-spreading components[J].Metal World,2015(2):69(in Chinese).
张超,张杨,刘娜,等.先进高导热铝/金刚石复合材料及其导-散热部件制备技术[J].金属世界,2015(2):69.
64 Mizuuchi K, Inoue K, Agari Y, et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid coexistent state by SPS and their thermal properties[J].Composites Part B:Engineering,2011,42(4):825.
65 Chu K, Jia C, Liang X, et al. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering[J].Rare Metals,2009,28(6):646.
66 Mizuuchi K, Inoue K, Agari Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid-liquid co-existent state by SPS[J].Composites Part B: Engineering,2011,42(5):1029.
67 Wu J H, Zhang H L, Zhang Y, et al. The role of Ti coating in enhancing tensile strength of Al/diamond composites[J].Materials Science and Engineering:A,2013,565:33.
68 Xue C, Yu J K. Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface[J].Surface and Coa-tings Technology,2013,217:46.
69 Tan Z, Li Z, Fan G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design,2013,47:160.
70 Feng H, Yu J K, Tan W. Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles[J].Materials Chemistry and Physics,2010,124(1):851.
71 Yang W, Peng K, Zhu J, et al. Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer[J].Diamond and Related Materials,2014,46:35.
72 Monje I E, Louis E, Molina J M. Aluminum/diamond composites: A preparative method to characterize reactivity and selectivity at the interface[J].Scripta Materialia,2012,66(10):789.
73 Ueno T, Yoshioka T, Ogawa J, et al. Highly thermal conductive metal/carbon composites by pulsed electric current sintering[J].Synthetic Metals,2009,159(21-22):2170.
74 Yuan G, Li X, Dong Z, et al. Graphite blocks with preferred orientation and high thermal conductivity[J].Carbon,2012,50(1):175.
75 Zhou C, Ji G, Chen Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J].Materials & Design,2014,63:719.
76 Liu Yizhuozi. Preparation of high thermal-conductivity flake grap-hite/Al compo-sites[D].Beijing:General Research Institute for Nonferrous Metals,2016(in Chinese).
刘依卓子.高导热片状石墨/铝复合材料的制备[D].北京:北京有色金属研究总院,2016.
77 Yao Zhengzheng, Tong Wei, Chen Minghai, et al. Controlling the interface reaction in carbon nanotubes- reinforced aluminum compo-site: A review[J].Materials Review A:Review Papers,2016,30(3):119(in Chinese).
姚争争,童伟,陈名海,等.碳纳米管增强铝基复合材料界面控制研究进展[J].材料导报:综述篇,2016,30(3):119.
78 Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J].Scripta Materialia,2008,59(1):11.
79 Prieto R, Molina J M, Narciso J, et al. Thermal conductivity of graphite flakes-SiC particles/metal composites[J].Composites Part A,2011,42(12):1970.
80 Chang C J, Chang C H, Hwang J D, et al. Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites[C]∥4th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei,2009:461.
81 Hutsch T, Schubert T, Schmidt J, et al. Innovative metal-graphite composites as thermally conducting materials[C]∥PM2010 World Congress-PM Functional Material-Heat Sinks.Florence,2010.
82 Zhou Cong. Design, preparation and properties of graphite-aluminum composites with high thermal conductivity and low thermal expansion[D].Shanghai:Shanghai Jiao Tong University,2015(in Chinese).
周聪.高导热、低膨胀石墨-铝复合材料的设计、制备与性能研究[D].上海:上海交通大学,2015.
83 Pop E, Mann D, Wang Q, et al. Thermal conductance of an indivi-dual single-wall carbon nanotube above room temperature[J].Nano Letters,2006,6(1):96.
84 Jakubinek M B, Johnson M B, White M A, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns[J].Carbon,2012,50(1):244.
85 Bakshi S R, Patel R R, Agarwal A. Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method[J].Computational Materials Science,2010,50(2):419.
86 Wu J, Zhang H, Zhang Y, et al. Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering[J].Materials & Design,2012,41:344.
87 Nam D H, Cha S I, Lee K M, et al. Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites[J].Journal of Nanoscience and Nanotechnology,2016,16(11):12013.
88 Shin S E, Choi H J, Bae D H. Electrical and thermal conductivities of aluminum-based composites containing multi-walled carbon nanotubes[J].Journal of Composite Materials,2013,47(18):2249.
[1] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[2] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[3] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[4] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[5] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[6] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[7] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[8] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[9] 胡文杰, 郭洪民, 邓奔, 杨坤义, 余词胜. (Si+Mn)/Fe对Al-5Cu合金铸态组织及力学性能的影响[J]. 材料导报, 2023, 37(11): 21100008-6.
[10] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[11] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[12] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[13] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[14] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[15] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed