Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060149-10    https://doi.org/10.11896/cldb.22060149
  高分子与聚合物基复合材料 |
可穿戴纤维基能源转换器件研究进展
王昊煜1, 刘哲1,2,*, 贺思佳1, 张健3, 杭格格3, 卫嬴3, 汪秀琛2,3,*
1 西安工程大学纺织科学与工程学院,西安 710048
2 西安工程大学功能性纺织材料及制品教育部重点实验室,西安 710048
3 西安工程大学服装与艺术设计学院,西安 710048
Research Progress of Wearable Fiber-based Energy Conversion Devices
WANG Haoyu1, LIU Zhe1,2,*, HE Sijia1, ZHANG Jian3, HANG Gege3, WEI Ying3, WANG Xiuchen2,3,*
1 School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2 Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
3 School of Apparel and Art Design, Xi'an Polytechnic University, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 86575KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着智能可穿戴设备的普及,其能源供应问题愈加突出,一种绿色且高效的供能系统有待被研发。纤维基能源转换器件凭借着其优异的可集成性和宏观可调性,在柔性穿戴领域受到了越来越多的关注,有望成为解决新一代能源供给问题的有效方案。为进一步深化对纤维基能源转换方案的认识,本文主要回顾了压电、热电和磁电纤维基能源转换器件的最新研究与应用进展,重点讨论了压电纤维、热电纤维和磁电纤维的制备方法、性能分析和可穿戴应用,最后提出了纤维基能源转换器件在应用中所面临的问题与挑战,并对其未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王昊煜
刘哲
贺思佳
张健
杭格格
卫嬴
汪秀琛
关键词:  纤维基能源转换器件  压电纤维  热电纤维  磁电纤维  可穿戴    
Abstract: Traditional chemical energy sources have defects such as low energy density and poor applicability, which make them difficult to meet the needs of power and flexible design of today's electronic devices. These problems severely limit the development of smart wearable devices, so there is an urgent need to develop a flexible and efficient wearable energy supply system. Optical fiber-based energy conversion devices have attracted more and more attention in the field of flexible wearable devices due to their excellent integration and macroscopic tunability, and are expected to become an effective solution to the new generation of energy supply problems. In order to further deepen the understanding of fiber-based energy conversion schemes, this paper mainly reviews the latest research and application progress of piezoelectric, thermoelectric and magnetoelectric fiber-based energy conversion devices. The preparation methods, performance analysis and wearable applications of piezoelectric, thermoelectric and magnetoelectric fibers are emphasized. Finally, we put forward the problems and challenges in the application of fiber-based energy conversion devices, also look forward to its future development trend.
Key words:  fiber-based energy conversion devices    piezoelectric fiber    thermoelectric fiber    magnetoelectric fiber    wearable
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 陕西省创新人才项目(202205);陕西省重点研发计划(2022GY-277);西安工程大学高层次人才支持计划(107020587)
通讯作者:  *刘哲,西安工程大学纺织科学与工程学院教授、博士研究生导师。1994年7月西安工程大学针织工程专业本科毕业,2001年西安工程大学纺织工程专业硕士毕业,2006年天津工业大学服装设计与工程专业博士毕业。目前主要从事功能性纺织材料及制品等研究工作。发表论文90余篇,获授权国家发明专利20余项。xyliuzhe@163.com;
汪秀琛,西安工程大学服装与艺术设计学院教授、博士研究生导师。1994年7月西安工程大学纺织品设计专业本科毕业,2006年西安工程大学服装设计与工程专业硕士毕业,2014年天津工业大学服装设计与工程专业博士毕业。目前主要从事功能性纺织材料、功能性服装等研究工作。发表论文70余篇,获授权国家发明专利20余项。nbwangxiuchen@163.com   
作者简介:  王昊煜,2021年6月毕业于西安邮电大学,获得工学学士学位,现为西安工程大学纺织科学与工程学院硕士研究生,在刘哲教授的指导下进行研究,目前主要研究领域为新型纺织加工与应用。
引用本文:    
王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
WANG Haoyu, LIU Zhe, HE Sijia, ZHANG Jian, HANG Gege, WEI Ying, WANG Xiuchen. Research Progress of Wearable Fiber-based Energy Conversion Devices. Materials Reports, 2024, 38(3): 22060149-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060149  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22060149
1 Zhang J L, Tong W, Qi H H. Chinese Journal of Power Sources, 2017, 41(9), 1377 (in Chinese).
张金龙, 佟微, 漆汉宏. 电源技术, 2017, 41(9), 1377.
2 Zhou M Y, Al-Furjan M S H, Wang B. Sensors, 2018, 18(12), 16.
3 Zhang Y H, Lee C H, Zhang X R. Journal of Physics D-Applied Physics, 2019, 52(45), 8.
4 Zhang B L, Wang K, Li J H, et al. Materials Reports, 2022, 36(20), 115 (in Chinese).
张佰伦, 王凯, 李嘉辉, 等. 材料导报, 2022, 36(20), 115.
5 Aftab S, Nawaz T, Tahir M B. International Journal of Energy Research, 2021, 45(15), 20545.
6 Rogdakis K, Karakostas N, Kymakis E. Energy & Environmental Science, 2021, 14(6), 3352.
7 Zhang Q, Suresh L, Liang Q J, et al. Advanced Sustainable Systems, 2021, 5(3), 19.
8 Starner T. IBM Systems Journal, 1996, 35(3), 618.
9 Duan J J, Feng G, Yu B Y, et al. Nature Communications, 2018, 9, 8.
10 Wang Z L. Nano Energy, 2018, 54, 477.
11 Lee H, Roh J S. Textile Research Journal, 2019, 89(13), 2532.
12 Shi X L, Zou J, Chen Z G. Chemical Reviews, 2020, 120(15), 7399.
13 Lu Y, Qiu Y, Cai K F, et al. Energy & Environmental Science, 2020, 13(4), 1240.
14 Ma W J, Zhang Y, Pan S W, et al. Chemical Society Reviews, 2021, 50(12), 7009.
15 He W Y, Cheng H H, Qu L T, et al. Acta Physico-Chimica Sinica, 2022, 38(9), 23 (in Chinese).
贺文娅, 程虎虎, 曲良体, 等. 物理化学学报, 2022, 38(9), 23.
16 Zhang P X, Deng B, Sun W T, et al. Micromachines, 2021, 12(8), 15.
17 Liu Y, Wang Y J. Journal of the Chinese Ceramic Society, 2022, 50(3), 625 (in Chinese).
刘洋, 汪尧进. 硅酸盐学报, 2022, 50(3), 625.
18 Yang X, Shen J, Zhang Y Y, et al. Journal of the Chinese Ceramic So-ciety, 2021, 49(4), 659 (in Chinese).
杨雄, 沈杰, 张瑶瑶, 等. 硅酸盐学报, 2021, 49(4), 659.
19 Szewczyk P K, Gradys A, Kim S K, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 13575.
20 Luo G X, Luo Y Y, Zhang Q K, et al. Materials, 2020, 13(6), 10.
21 Zhang W X, Zaarour B, Zhu L, et al. Journal of Engineered Fibers and Fabrics, 2020, 15, 8.
22 Abolhasani M M, Naebe M, Amiri M H, et al. Advanced Science, 2020, 7(13), 9.
23 Lo W C, Chen C C, Fuh Y K. Advanced Materials Technologies, 2021, 6(4), 11.
24 Liu T, Zhao C, Zhang G H, et al. Material for Mechanical Engineering, 2020, 44(6), 82 (in Chinese).
刘婷, 赵程, 张刚华, 等. 机械工程材料, 2020, 44(6), 82.
25 Huang L, Lin S Z, Xu Z S, et al. Advanced Materials, 2020, 32(5), 20.
26 Chamankar N, Khajavi R, Yousefi A A, et al. Ceramics International, 2020, 46(12), 19669.
27 Du X X, Zhou Z, Zhang Z, et al. Journal of Advanced Ceramics, 2022, 11(2), 331.
28 Pan C T, Wang S Y, Yen C K, et al. ACS Omega, 2020, 5(28), 17090.
29 Mokhtari F, Spinks G M, Fay C, et al. Advanced Materials Technologies, 2020, 5(4), 15.
30 Mokhtari F, Spinks G M, Sayyar S, et al. Advanced Materials Technologies, 2021, 6(2), 17.
31 Zhang L S, Lin S P, Hua T, et al. Advanced Energy Materials, 2018, 8(5), 18.
32 Chen W Y, Shi X L, Zou J, et al. Nano Energy, 2021, 81, 19.
33 He Y, Wan C W, Zhang Y K, et al. Wool Textile Journal, 2022, 50(3), 124 (in Chinese).
何宇, 万成伟, 张叶轲, 等. 毛纺科技, 2022, 50(3), 124.
34 Lu W, Yang S Q, Liang T H, et al. Electronic Components and Mate-rials, 2020, 39(5), 22 (in Chinese).
卢伟, 杨仕清, 梁桃华, 等. 电子元件与材料, 2020, 39(5), 22.
35 Yang L, You H, Tang K C, et al. Transducer and Microsystem Technologies, 2021, 40(10), 14 (in Chinese).
杨龙, 尤汉, 唐可琛, 等. 传感器与微系统, 2021, 40(10), 14.
36 Yi W, Zhao Y J, Wang B Y, et al. Journal of the Chinese Ceramic Society, 2021, 49(6), 1111 (in Chinese).
易文, 赵永杰, 王伯宇, 等. 硅酸盐学报, 2021, 49(6), 1111.
37 Li X L, Chen Y P, Han Q, et al. Chemical Research and Application, 2021, 33(12), 2420 (in Chinese).
李晓龙, 陈玉萍, 韩茜, 等. 化学研究与应用, 2021, 33(12), 2420.
38 Cai B W, Li J H, Sun H, et al. Science China Materials, 2018, 61(9), 1218.
39 Blackburn J L, Ferguson A J, Cho C, et al. Advanced Materials, 2018, 30(11), 35.
40 Jin L L, Sun T T, Zhao W, et al. Journal of Power Sources, 2021, 496, 8.
41 Park K T, Lee T, Ko Y, et al. ACS Applied Materials & Interfaces, 2021, 13(5), 6257.
42 Zhang Y, Heo Y J, Park M, et al. Polymers, 2019, 11(1), 22.
43 Jiang F X, Liu C C, Xu J K. Chinese Science Bulletin, 2017, 62(19), 2063 (in Chinese).
蒋丰兴, 刘聪聪, 徐景坤. 科学通报, 2017, 62(19), 2063.
44 Yang Y, Deng H, Fu Q. Materials Chemistry Frontiers, 2020, 4(11), 3130.
45 Bao C P, Zhou Y J, Dong L, et al. Acta Materiae Compositae Sinica, DOI:10. 13801/j. cnki. fhclxb. 20220505. 001 (in Chinese).
鲍程鹏, 周亚杰, 董岚, 等. 复合材料学报, DOI:10. 13801/j. cnki. fhclxb. 20220505. 001.
46 Kim Y, Lund A, Noh H, et al. Macromolecular Materials and Enginee-ring, 2020, 305(3), 9.
47 Wen N X, Fan Z, Yang S T, et al. Nano Energy, 2020, 78, 11.
48 Yin S X, Lu W T, Li X Q, et al. Polymer Bulletin, 2020, 260(12), 58 (in Chinese).
尹四星, 鹿文涛, 李小全, 等. 高分子通报, 2020, 260(12), 58.
49 Liu J, Liu G Q, Xu J K, et al. ACS Applied Energy Materials, 2020, 3(7), 6165.
50 Yang J J, Jia Y H, Liu Y F, et al. Composites Communications, 2021, 27, 6.
51 Lee T, Lee J W, Park K T, et al. ACS Nano, 2021, 15(8), 13118.
52 Liu H C, Qian Y, Lee C K. Sensors and Actuators A-Physical, 2013, 204, 37.
53 Zhang Y Y, Cheng Q F. Materials China, 2019, 38(1), 49 (in Chinese).
张媛媛, 程群峰. 中国材料进展, 2019, 38(1), 49.
54 Xiao Z, Zhang J W, Lei L, et al. Materials Reports, 2017, 31(15), 153 (in Chinese).
肖珍, 张嘉玮, 雷磊, 等. 材料导报, 2017, 31(15), 153.
55 Lee H, Roh J S. Fashion and Textiles, 2021, 8(1), 10.
56 Kang S W, Choi H, Park H I, et al. Sensors, 2017, 17(11), 10.
57 Zhang X, Ai J W, Ma Z, et al. Nano Energy, 2020, 69, 12.
58 Liu J X, Du Z L, Wang Q, et al. ACS Applied Materials & Interfaces, 2022, 14(1), 2113.
59 Wang R, Du Z L, Xia Z G, et al. Advanced Functional Materials, 2022, 32(6), 10.
[1] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[2] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[3] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[4] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[5] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[6] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[7] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[8] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[9] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[10] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[11] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[12] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[13] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[14] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed