Research Progress of Wearable Fiber-based Energy Conversion Devices
WANG Haoyu1, LIU Zhe1,2,*, HE Sijia1, ZHANG Jian3, HANG Gege3, WEI Ying3, WANG Xiuchen2,3,*
1 School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China 2 Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China 3 School of Apparel and Art Design, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: Traditional chemical energy sources have defects such as low energy density and poor applicability, which make them difficult to meet the needs of power and flexible design of today's electronic devices. These problems severely limit the development of smart wearable devices, so there is an urgent need to develop a flexible and efficient wearable energy supply system. Optical fiber-based energy conversion devices have attracted more and more attention in the field of flexible wearable devices due to their excellent integration and macroscopic tunability, and are expected to become an effective solution to the new generation of energy supply problems. In order to further deepen the understanding of fiber-based energy conversion schemes, this paper mainly reviews the latest research and application progress of piezoelectric, thermoelectric and magnetoelectric fiber-based energy conversion devices. The preparation methods, performance analysis and wearable applications of piezoelectric, thermoelectric and magnetoelectric fibers are emphasized. Finally, we put forward the problems and challenges in the application of fiber-based energy conversion devices, also look forward to its future development trend.
王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
WANG Haoyu, LIU Zhe, HE Sijia, ZHANG Jian, HANG Gege, WEI Ying, WANG Xiuchen. Research Progress of Wearable Fiber-based Energy Conversion Devices. Materials Reports, 2024, 38(3): 22060149-10.
1 Zhang J L, Tong W, Qi H H. Chinese Journal of Power Sources, 2017, 41(9), 1377 (in Chinese). 张金龙, 佟微, 漆汉宏. 电源技术, 2017, 41(9), 1377. 2 Zhou M Y, Al-Furjan M S H, Wang B. Sensors, 2018, 18(12), 16. 3 Zhang Y H, Lee C H, Zhang X R. Journal of Physics D-Applied Physics, 2019, 52(45), 8. 4 Zhang B L, Wang K, Li J H, et al. Materials Reports, 2022, 36(20), 115 (in Chinese). 张佰伦, 王凯, 李嘉辉, 等. 材料导报, 2022, 36(20), 115. 5 Aftab S, Nawaz T, Tahir M B. International Journal of Energy Research, 2021, 45(15), 20545. 6 Rogdakis K, Karakostas N, Kymakis E. Energy & Environmental Science, 2021, 14(6), 3352. 7 Zhang Q, Suresh L, Liang Q J, et al. Advanced Sustainable Systems, 2021, 5(3), 19. 8 Starner T. IBM Systems Journal, 1996, 35(3), 618. 9 Duan J J, Feng G, Yu B Y, et al. Nature Communications, 2018, 9, 8. 10 Wang Z L. Nano Energy, 2018, 54, 477. 11 Lee H, Roh J S. Textile Research Journal, 2019, 89(13), 2532. 12 Shi X L, Zou J, Chen Z G. Chemical Reviews, 2020, 120(15), 7399. 13 Lu Y, Qiu Y, Cai K F, et al. Energy & Environmental Science, 2020, 13(4), 1240. 14 Ma W J, Zhang Y, Pan S W, et al. Chemical Society Reviews, 2021, 50(12), 7009. 15 He W Y, Cheng H H, Qu L T, et al. Acta Physico-Chimica Sinica, 2022, 38(9), 23 (in Chinese). 贺文娅, 程虎虎, 曲良体, 等. 物理化学学报, 2022, 38(9), 23. 16 Zhang P X, Deng B, Sun W T, et al. Micromachines, 2021, 12(8), 15. 17 Liu Y, Wang Y J. Journal of the Chinese Ceramic Society, 2022, 50(3), 625 (in Chinese). 刘洋, 汪尧进. 硅酸盐学报, 2022, 50(3), 625. 18 Yang X, Shen J, Zhang Y Y, et al. Journal of the Chinese Ceramic So-ciety, 2021, 49(4), 659 (in Chinese). 杨雄, 沈杰, 张瑶瑶, 等. 硅酸盐学报, 2021, 49(4), 659. 19 Szewczyk P K, Gradys A, Kim S K, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 13575. 20 Luo G X, Luo Y Y, Zhang Q K, et al. Materials, 2020, 13(6), 10. 21 Zhang W X, Zaarour B, Zhu L, et al. Journal of Engineered Fibers and Fabrics, 2020, 15, 8. 22 Abolhasani M M, Naebe M, Amiri M H, et al. Advanced Science, 2020, 7(13), 9. 23 Lo W C, Chen C C, Fuh Y K. Advanced Materials Technologies, 2021, 6(4), 11. 24 Liu T, Zhao C, Zhang G H, et al. Material for Mechanical Engineering, 2020, 44(6), 82 (in Chinese). 刘婷, 赵程, 张刚华, 等. 机械工程材料, 2020, 44(6), 82. 25 Huang L, Lin S Z, Xu Z S, et al. Advanced Materials, 2020, 32(5), 20. 26 Chamankar N, Khajavi R, Yousefi A A, et al. Ceramics International, 2020, 46(12), 19669. 27 Du X X, Zhou Z, Zhang Z, et al. Journal of Advanced Ceramics, 2022, 11(2), 331. 28 Pan C T, Wang S Y, Yen C K, et al. ACS Omega, 2020, 5(28), 17090. 29 Mokhtari F, Spinks G M, Fay C, et al. Advanced Materials Technologies, 2020, 5(4), 15. 30 Mokhtari F, Spinks G M, Sayyar S, et al. Advanced Materials Technologies, 2021, 6(2), 17. 31 Zhang L S, Lin S P, Hua T, et al. Advanced Energy Materials, 2018, 8(5), 18. 32 Chen W Y, Shi X L, Zou J, et al. Nano Energy, 2021, 81, 19. 33 He Y, Wan C W, Zhang Y K, et al. Wool Textile Journal, 2022, 50(3), 124 (in Chinese). 何宇, 万成伟, 张叶轲, 等. 毛纺科技, 2022, 50(3), 124. 34 Lu W, Yang S Q, Liang T H, et al. Electronic Components and Mate-rials, 2020, 39(5), 22 (in Chinese). 卢伟, 杨仕清, 梁桃华, 等. 电子元件与材料, 2020, 39(5), 22. 35 Yang L, You H, Tang K C, et al. Transducer and Microsystem Technologies, 2021, 40(10), 14 (in Chinese). 杨龙, 尤汉, 唐可琛, 等. 传感器与微系统, 2021, 40(10), 14. 36 Yi W, Zhao Y J, Wang B Y, et al. Journal of the Chinese Ceramic Society, 2021, 49(6), 1111 (in Chinese). 易文, 赵永杰, 王伯宇, 等. 硅酸盐学报, 2021, 49(6), 1111. 37 Li X L, Chen Y P, Han Q, et al. Chemical Research and Application, 2021, 33(12), 2420 (in Chinese). 李晓龙, 陈玉萍, 韩茜, 等. 化学研究与应用, 2021, 33(12), 2420. 38 Cai B W, Li J H, Sun H, et al. Science China Materials, 2018, 61(9), 1218. 39 Blackburn J L, Ferguson A J, Cho C, et al. Advanced Materials, 2018, 30(11), 35. 40 Jin L L, Sun T T, Zhao W, et al. Journal of Power Sources, 2021, 496, 8. 41 Park K T, Lee T, Ko Y, et al. ACS Applied Materials & Interfaces, 2021, 13(5), 6257. 42 Zhang Y, Heo Y J, Park M, et al. Polymers, 2019, 11(1), 22. 43 Jiang F X, Liu C C, Xu J K. Chinese Science Bulletin, 2017, 62(19), 2063 (in Chinese). 蒋丰兴, 刘聪聪, 徐景坤. 科学通报, 2017, 62(19), 2063. 44 Yang Y, Deng H, Fu Q. Materials Chemistry Frontiers, 2020, 4(11), 3130. 45 Bao C P, Zhou Y J, Dong L, et al. Acta Materiae Compositae Sinica, DOI:10. 13801/j. cnki. fhclxb. 20220505. 001 (in Chinese). 鲍程鹏, 周亚杰, 董岚, 等. 复合材料学报, DOI:10. 13801/j. cnki. fhclxb. 20220505. 001. 46 Kim Y, Lund A, Noh H, et al. Macromolecular Materials and Enginee-ring, 2020, 305(3), 9. 47 Wen N X, Fan Z, Yang S T, et al. Nano Energy, 2020, 78, 11. 48 Yin S X, Lu W T, Li X Q, et al. Polymer Bulletin, 2020, 260(12), 58 (in Chinese). 尹四星, 鹿文涛, 李小全, 等. 高分子通报, 2020, 260(12), 58. 49 Liu J, Liu G Q, Xu J K, et al. ACS Applied Energy Materials, 2020, 3(7), 6165. 50 Yang J J, Jia Y H, Liu Y F, et al. Composites Communications, 2021, 27, 6. 51 Lee T, Lee J W, Park K T, et al. ACS Nano, 2021, 15(8), 13118. 52 Liu H C, Qian Y, Lee C K. Sensors and Actuators A-Physical, 2013, 204, 37. 53 Zhang Y Y, Cheng Q F. Materials China, 2019, 38(1), 49 (in Chinese). 张媛媛, 程群峰. 中国材料进展, 2019, 38(1), 49. 54 Xiao Z, Zhang J W, Lei L, et al. Materials Reports, 2017, 31(15), 153 (in Chinese). 肖珍, 张嘉玮, 雷磊, 等. 材料导报, 2017, 31(15), 153. 55 Lee H, Roh J S. Fashion and Textiles, 2021, 8(1), 10. 56 Kang S W, Choi H, Park H I, et al. Sensors, 2017, 17(11), 10. 57 Zhang X, Ai J W, Ma Z, et al. Nano Energy, 2020, 69, 12. 58 Liu J X, Du Z L, Wang Q, et al. ACS Applied Materials & Interfaces, 2022, 14(1), 2113. 59 Wang R, Du Z L, Xia Z G, et al. Advanced Functional Materials, 2022, 32(6), 10.