Please wait a minute...
CLDB  2017, Vol. 31 Issue (8): 130-134    https://doi.org/10.11896/j.issn.1005-023X.2017.08.026
  计算模拟 |
基于损伤力学的疲劳裂纹萌生及扩展规律研究*
孙志礼, 柴小冬, 柳溪溪, 王健
东北大学机械工程与自动化学院, 沈阳 110819
Fatigue Crack Initiation and Extension Regularity Based on Damage Mechanics
SUN Zhili, CHAI Xiaodong, LIU Xixi, WANG Jian
School of Mechanical Engineering & Automation,Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 1421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对金属构件疲劳裂纹的萌生、扩展寿命及其规律等问题,应用损伤力学理论与有限元相结合的方法,建立了计算疲劳裂纹全寿命的统一模型。引入附加载荷法,通过MATLAB编程计算,实现了对刚度矩阵的连续计算,并给出了编程的流程。通过对单个单元的损伤计算,得到了单元从无损到破坏过程中等效应力的变化;通过计算各个构件损伤单元寿命,进而给出了金属构件总体疲劳寿命。分析得到了微裂纹萌生及扩展寿命占总体疲劳寿命的80%以上,并应用有限元软件ANSYS模拟给出了缺口件裂纹萌生及扩展过程。理论计算的结果与试验数据对比基本一致,验证了本工作方法的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙志礼
柴小冬
柳溪溪
王健
关键词:  疲劳裂纹  损伤力学  疲劳寿命  扩展规律    
Abstract: Aiming at the problem of metal fatigue crack initiation and propagation life forecast, an unified a model was presented based on damage mechanics and finite element method, and the calculating program was established.The stiffness matrix was continuously calculated by introducing the additional loading method.The calculating program was designed in MATLAB and the calculation flow diagram was showed in this paper.Then through the calculation of a single cell,the changing process of equivalent stress was presented with the cell from undamaged state to completely damaged state and the reasons of the changes were analyzed. It was found that the crack initiation and propagation life was more than 80% of the total life. By finite element software ANSYS simulation, the crack initiation and propagation process of notched specimen were obtained. Finally, the results of theoretical calculation and the experimental data were basically identical, which verify the accuracy of this method.
Key words:  fatigue crack    damage mechanics    fatigue life    crack grown rate
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  U467.4+97  
基金资助: 国防技术基础项目(Z092012B001)
作者简介:  孙志礼:男,1957年生,教授,博士研究生导师,主要研究方向为机械系统可靠性 E-mail:zhlsun@mail.neu.edu.cn; 柴小冬:男,1987年生,博士研究生,主要研究方向为疲劳可靠性及耐久性 E-mail:tcd87@163.com
引用本文:    
孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
SUN Zhili, CHAI Xiaodong, LIU Xixi, WANG Jian. Fatigue Crack Initiation and Extension Regularity Based on Damage Mechanics. Materials Reports, 2017, 31(8): 130-134.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.026  或          https://www.mater-rep.com/CN/Y2017/V31/I8/130
1 Colin R Gagg, Peter R Lewis. In-service fatigue failure of engineered products and structures-Case study review[J]. Eng Failure Analysis,2009,16:1775.
2 Zheng Jinyang, Wu Linlin, Shi Jianfeng. Extreme pressure equipments[J].Chin J Mech Eng,2011,24(2):202.
3 Riahi H, Bressolette P H, Chateauneuf A. Random mode by stochastic collocation method[J]. Eng Fatigue Crack Growth Mixed Fracture Mech,2010,77:3292.
4 Li Aimin, Cui Haitao, Wen Weidong, et al. Prediction of fretting fatigue life based on nonlinear continuum damage mechanics[J].Acta Aeronautica et Astronautica Sinica,2013,34(9):2122(in Chinese).
李爱民,崔海涛,温卫东,等.基于非线性连续介质损伤力学方法的微动疲劳寿命预测[J].航空学报,2013,34(9):2122.
5 Li Qiang, Zhang Liting, Qi Qinglan, et al. Study of the curve branch crack model for the closed flaw under compressive loading[J]. Eng Mech,2013,30(4):294(in Chinese).
李强,张力霆,齐清兰,等. 压缩载荷下闭合裂纹的曲线分支裂纹模型研究[J].工程力学,2013,30(4):294.
6 Shangguan Wenbin, Wang Xiaoli, Duan Xiaocheng, et al. Fatigue crack growth experiment and modeling for rubbers used in isolators under variable amplitude loads[J]. J Mech Eng,2015,51(8):50(in Chinese).
上官文斌,王小莉,段小成,等. 变幅载荷下隔振器橡胶材料裂纹扩展试验及建模方法[J]机械工程学报,2015,51(8):50.
7 Yang Jiyun, Zhang Xing, Zhang Min. Numerical method for crack extension analysis based on fatigue crack formation curve[J]. J Mech Eng,2004,40(7):50(in Chinese).
杨继运,张行,张珉.基于疲劳裂纹形成曲线的裂纹扩展分析数值方法[J].机械工程学报,2004,40(7):50.
8 Dattoma V, Giancane S, Nobile R,et al. Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model[J]. Int J Fatigue,2006,28(2):89.
9 Gou Yilong,Yin Zhiping,Huang Qiqing. A finite element method for prediction of pitting-corrosion fatigue life based on damage mechanics[J]. Adv Aeronautical Sci Eng,2014,2(5):233(in Chinese).
苟义龙,殷之平,黄其青. 基于损伤力学预估点蚀疲劳寿命有限元法[J].航空工程进展,2014,2(5):233.
10 Li Yousheng,Ma Qiaomei,Guo Xuxia, et al. Crack initiation life prediction of notch structure based on damage mechanics[J]. J Machine Des,2015,32(12):93(in Chinese).
李友胜,马巧梅,郭旭侠,等.基于损伤力学预估切口构件裂纹形成寿命[J]. 机械设计,2015,32(12):93.
11 Zhang Yanjun, Zhang Miao, Hu Weiping, et al. Fatigue life prediction of the joint plate based on damage mechanics method[J]. J Mech Strength,2011,33(3):443(in Chinese).
张彦军,张淼,胡伟平,等. 基于损伤力学方法的带板连接件疲劳寿命预估[J].机械强度,2011,33(3):443.
12 Fei Shen, Wei Pinghu. A new damage mechanics based approach to fatigue life prediction and its engineering application[J]. Acta Mechanica Solid Sinica,2015,28(5):357.
13 张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2006.
14 高镇同, 蒋新桐, 熊峻江,等. 疲劳性能实验设计和数据处理[M].北京:北京航空航天大学出版社,2008.
[1] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[2] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[3] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[4] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[7] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[8] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[9] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[10] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[11] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[12] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[13] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[14] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[15] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed