Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040064-9    https://doi.org/10.11896/cldb.24040064
  高分子与聚合物基复合材料 |
可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用
董沛1,2, 刘宇欣3, 张鹏1,2, 盛扬1,2, 孙一新1,2, MarkBradley2,4, 张嵘1,2,*
1 常州大学材料科学与工程学院,江苏 常州 213164
2 常州大学先进功能材料江苏省国际合作联合实验室,江苏 常州 213164
3 常州华森医疗器械股份有限公司,江苏 常州 213164
4 伦敦玛丽女王大学,大学精准医疗研究院,英国 伦敦 E1 1HH
Preparation of Biodegradable Chitosan Semi-interpenetrating Network Hydrogel and Its Application for Gastric Retention
DONG Pei1,2, LIU Yuxin3, ZHANG Peng1,2, SHENG Yang1,2, SUN Yixin1,2, Mark Bradley2,4, ZHANG Rong1,2,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, Jiangsu, China
3 Changzhou Waston Medical Equipment Co., Ltd., Changzhou 213164, Jiangsu, China
4 Precision Healthcare University Research Institute, Queen Mary University of London, London E1 1HH, UK
下载:  全 文 ( PDF ) ( 29294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胃滞留水凝胶是一种具有潜在减肥效果的材料,可有效解决口服药物疗法中药物生物利用度低的问题。本工作旨在开发一种可降解的水凝胶,且其能够长时间滞留在胃部,起到药物释放的效果。本工作合成了两种可降解大分子交联剂,以丙烯酰胺为主要单体,将其与壳聚糖溶液混合,通过氧化还原引发剂引发聚合后形成具有半互穿网络结构的可降解水凝胶。通过扫描电子显微镜和傅里叶变换红外光谱等分析手段,对所制备的水凝胶的形貌和化学结构进行了表征。体外药物释放实验表明,该壳聚糖半互穿网络水凝胶能够实现可控的药物释放,延长药物在胃内的滞留时间。本工作还评估了水凝胶的溶胀性能、生物相容性和在模拟胃液中的降解性能,结果显示该水凝胶(交联剂比例4∶6)的溶胀率达到2 700%,对L-929细胞具有良好的生物相容性,在模拟胃液中5 d失重达到7%。4∶6水凝胶在60%变形情况下的压缩模量大于13 kPa,能够耐受胃部蠕动挤压。因此,基于丙烯酰胺的壳聚糖半互穿网络水凝胶在胃部疾病治疗方面具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董沛
刘宇欣
张鹏
盛扬
孙一新
MarkBradley
张嵘
关键词:  可降解水凝胶  胃滞留  药物缓释  生物相容性  半互穿网络    
Abstract: Gastric retention hydrogels represent a potential material with weight-loss effects and offer an effective solution to address the low bioavailability of drugs in pharmaceutical therapy. This study aims to develop a degradable hydrogel capable of prolonged retention in the stomach, facilitating both weight loss and drug release. Two degradable macromolecular cross-linking agents were synthesized, with acrylamide as the main mo-nomer, mixed with chitosan solution for the preparation of a degradable hydrogel with a semi-interpenetrating network (sIPN) structure initiated by a redox initiator. The morphology and chemical structure of the prepared hydrogels were characterized using analytical techniques such as SEM and FTIR. In vitro drug release experiments demonstrated that the hydrogel achieved controlled drug release, extending the drug's retention time in the stomach. The swelling performance, biocompatibility and degradation properties of the hydrogel in simulated gastric fluid (SGF) were also evaluated. Results indicated that the hydrogel with cross-linking agent ratio 4∶6 exhibited a swelling ratio of 2 700%, excellent biocompatibility and a weight loss of 7% in SGF over 5 days. The 4∶6 hydrogel had a compressive modulus greater than 13 kPa at 60% deformation, demonstrating resistance to gastric peristalsis. Therefore, the chitosan sIPN hydrogel holds promising potential for applications in weight loss and the treatment of gastric diseases.
Key words:  degradable hydrogel    gastric retention    drug release    biocompatibility    semi-interpenetrating network
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB324  
基金资助: 江苏省六大人才高峰创新团队(SWYY-CXTD-001);常州市科技局国际合作项目(CZ20190019)
通讯作者:  张嵘,博士,常州大学材料科学与工程学院教授、江苏省特聘教授。目前主要从事聚合物微点阵列芯片的制备与应用;(干)细胞的分离、提纯与体外培养相关聚合物的开发;可生物降解聚合物材料的开发;抗/灭菌聚合物材料的研发;生物医用高分子材料的研发。rzhang@cczu.edu.cn   
作者简介:  董沛,常州大学材料科学与工程学院硕士研究生,在张嵘教授的指导下进行研究。目前主要研究领域为亲水交联剂和可降解半互穿网络壳聚糖水凝胶的制备及水凝胶在胃滞留方面的应用。
引用本文:    
董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
DONG Pei, LIU Yuxin, ZHANG Peng, SHENG Yang, SUN Yixin, Mark Bradley, ZHANG Rong. Preparation of Biodegradable Chitosan Semi-interpenetrating Network Hydrogel and Its Application for Gastric Retention. Materials Reports, 2025, 39(8): 24040064-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040064  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040064
1 Yu C, Dou X, Meng L, et al. International Journal of Biological Macromolecules, 2023, 253, 127618.
2 Zhang H, Xue K, Xu X, et al. Small, 2024, 20, 2305502.
3 Huang J, Zhang Z, Jiang H. Applied Materials Today, 2023, 32, 101786.
4 Qaiser R, Pervaiz F, Hanan H, et al. Polymer Bulletin, 2023, 81(6), 5267.
5 Yang H, Yang H, Zhu C, et al. Food Hydrocolloids, 2023, 144, 108946.
6 Chavanpatil M D, Jain P, Chaudhari S, et al. International Journal of Pharmaceutics, 2006, 316(1-2), 86.
7 Govendeer M, Rats'o T A, Choonara Y E. Polymers, 2023, 15(6), 1385.
8 Zhou W, Yu X, Zhang Z, et al. International Journal of Pharmaceutics, 2023, 650, 123670.
9 Wang L, Zhang H J, Wang X, et al. Journal of Applied Polymer Science, 2023, 140(2), e53281.
10 Xia Y, Ma Z, Wu X, et al. Macromolecular Bioscience, 2023, 24(5), 2300399.
11 Koch S S C, Chamberlin A R. Synthetic Communications-An International Journal for Rapid Communication of Synthetic Organic Chemistry, 1989, 19(5-6), 829.
12 Dwan'isa J P L, Lecomte P, Duois P, et al. Macromolecules, 2003, 36(8), 2609.
13 Zong D, Sheng Y, Li X Q, et al. Materials Reports, 2022, 36(14), 216 (in Chinese).
宗丹, 盛扬, 李新庆, 等. 材料导报, 2022, 36(14), 216.
14 Bingol B, Altucu S, Duman F D, et al. ACS Applied Polymer Materials, 2019, 1(7), 1724.
15 Karimi N, Mansouri K, Soleiman-Beigi M, et al. Advanced Pharmaceutical Bulletin, 2020, 10(2), 221.
16 Choi J, Hwang D S, Lim C, et al. Carbohydrate Polymers, 2024, 324, 121504.
17 Shi Y, Wu B, Su S, et al. Nature Communications, 2023, 14(1), 1370.
18 Zhu H, Yang T, Chen S, et al. Advanced Composites and Hybrid Materials, 2023, 6(6), 192.
19 Naeem A, Yu C, He T H, et al. International Journal of Biological Macromolecules, 2023, 242, 125149.
20 Jayaramudu T, Ko H U, Kim H C, et al. Materials, 2019, 12(13), 2080.
21 Loncarevic A, Malbasa Z, Kovacic M, et al. International Journal of Biological Macromolecules, 2023, 251, 126373.
22 Lin F, Zheng J, Guo W, et al. Cellulose, 2019, 26(11), 6861.
23 Karvinen J, Kellomaki M. European Polymer Journal, 2022, 181, 111641.
24 Shi H, Ma D, Wu D, et al. International Journal of Biological Macromolecules, 2023, 255, 128122.
25 Ji X, Wei C, Wu C, et al. Composites Part B-Engineering, 2022, 236, 109816.
26 Dhiman S, Philip N, Singh T G, et al. Current Drug Delivery, 2023, 20(6), 708.
27 Tabata E, Wakita S, Kashimura A, et al. Scientific Reports, 2019, 9, 15609.
28 Salessiotle N. American Journal of Surgery, 1972, 124(3), 331.
29 Houghton L A, Read N W, Heddle R, et al. Gastroenterology, 1988, 94(6), 1276.
30 Liu J, Pang Y, Zhang S, et al. Nature Communications, 2017, 8, 124.
31 Lei J, Li X, Wang S, et al. ACS Applied Polymer Materials, 2019, 1(6), 1350.
32 Wu W X, Huang Y C, Lee W F. Iranian Polymer Journal, 2020, 29(8), 679.
33 Jin X, Wei C, Wu C, et al. European Polymer Journal, 2022, 170, 111155.
[1] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[2] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[3] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[4] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[5] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[6] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[7] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[8] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[9] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[10] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[11] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[12] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[13] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[14] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[15] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed