Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23060135-8    https://doi.org/10.11896/cldb.23060135
  无机非金属及其复合材料 |
基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究
李艺, 刘敬肖*, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰
大连工业大学纺织与材料工程学院, 辽宁 大连 116034
Synthesis of CsxWO3 Particles for High Near Infrared Shielding Film by Oxalic Acid Thermal Reduction
LI Yi, LIU Jingxiao*, SHI Fei, YANG Dayi, TIAN Ziwei, WANG Meiyu, WAN Jiaxiang, CHEN Chaofan, LYU Zhenjie
College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
下载:  全 文 ( PDF ) ( 26436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为推动铯钨青铜(CsxWO3)的工业化生产和广泛应用,以碳酸铯、三氧化钨为原料,采用固体草酸热解产生的CO作为还原气体,通过固相反应法制备具有高效近红外屏蔽性能的CsxWO3粉体,探究了还原反应温度对CsxWO3粒子结构与性能的影响,并从Lambert-Beer定律出发,提出了新的且更合理的透明隔热指数,以表征评价CsxWO3薄膜的近红外屏蔽性能。结果表明,在710 ℃所合成的CsxWO3-710粒子结晶度最好,制备的CsxWO3-PVA复合薄膜具有最佳的近红外屏蔽性能,且具有低雾度和高透明特点。而且,在690 ℃及CO还原下,以CsCl为铯源能够获得Cl掺杂的CsxWO3-yCly粒子,Cl掺杂能够进一步提高W5+/W6+比例和近红外屏蔽性能。当可见光最高透过率为70%时,CsxWO3-710和CsxWO3-yCly薄膜样品在1 500 nm的近红外屏蔽率分别达到96.59%和98.35%,透明隔热指数K分别为4.35和5.20。模拟隔热测试结果表明,红外灯辐照下,与空白玻璃相比,安装CsxWO3-710薄膜和CsxWO3-yCly薄膜玻璃的隔热箱内部空气温度分别有效降低15.5 ℃和17.8 ℃;自然阳光辐照下,连续9 d的测试结果表明,与空白对照组相比,CsxWO3-yCly薄膜玻璃的隔热箱内部温度降低5.1~11 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艺
刘敬肖
史非
杨大毅
田紫薇
王美玉
万佳翔
陈超凡
吕振杰
关键词:  铯钨青铜  固相合成  近红外屏蔽  节能窗  CO还原  透明隔热指数    
Abstract: In order to promote the industrial production and widespread application of cesium-tungsten bronze(CsxWO3), CsxWO3 powders with high efficient near-infrared shielding performance were prepared by solid phase reaction method using cesium carbonate, tungsten trioxide as raw materials and using CO generated from solid oxalic acid pyrolysis as a reducing gas. The effect of reduction reaction temperature on the structure and properties of CsxWO3 particles was investigated. Based on Lambert-Beer law, a new and more reasonable transparent thermal insulation index was proposed to characterize and evaluate the near-infrared shielding performance of CsxWO3 films. The results showed that the CsxWO3-710 particles synthesized at 710 ℃ exhibited the best crystallinity, and the as-prepared CsxWO3-PVA composite film exhibited the best near-infrared shielding ability, with low haze and high transparency. Moreover, Cl-doped CsxWO3-yCly particles can be synthesized by using CsCl as cesium source at 690 ℃ and CO reduction. Cl doping is beneficial for further improving the W5+/W6+ ratio and near-infrared shielding performance. When the maximum transmittance of visible light was 70%, the near-infrared shielding rate of CsxWO3-710 and CsxWO3-yCly film samples at 1 500 nm reached 96.59% and 98.35%, and the transparent heat insulation index K attained to 4.35 and 5.20, respectively. The simulated insulation test results show that under infrared lamp irradiation, compared with blank glass, the internal temperature of the insulation box installed with CsxWO3-710 thin film and CsxWO3-yCly thin film glass can be effectively reduced by 15.5 ℃ and 17.8 ℃, respectively. Under natural sunlight irradiation, the results of continuous testing for 9 days showed that the internal temperature of the insulation box with CsxWO3-yCly thin film glass decreased by 5.1—11 ℃ compared with the blank control group.
Key words:  cesium tungsten bronze    solid-phase synthesis    near infrared shielding    energy-saving window    CO reduction    transparent thermal insulation index
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TQ136.1  
基金资助: 国家自然科学基金(51778098);辽宁省教育厅高校基本科研项目(LJKMZ20220887);大连市科技创新基金计划(2018J12SN066)
通讯作者:  *刘敬肖,大连工业大学教授、硕士研究生导师。主要研究方向包括红外线遮蔽和节能窗材料、生态环境友好材料、介孔气凝胶材料、特种玻璃与陶瓷及功能复合材料(含生物医用材料)等。drliu-shi@dlpu.edu.cn   
作者简介:  李艺,大连工业大学材料与化工专业硕士研究生,在刘敬肖教授的指导下进行研究,主要研究方向为无机功能材料与技术,研究领域为功能粒子合成及节能窗口材料。
引用本文:    
李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
LI Yi, LIU Jingxiao, SHI Fei, YANG Dayi, TIAN Ziwei, WANG Meiyu, WAN Jiaxiang, CHEN Chaofan, LYU Zhenjie. Synthesis of CsxWO3 Particles for High Near Infrared Shielding Film by Oxalic Acid Thermal Reduction. Materials Reports, 2025, 39(7): 23060135-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23060135  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23060135
1 Raatikainen M, Skön J P, Leiviskä K, et al. Applied Energy, 2016, 165, 416.
2 Berardi U. Resources, Conservation and Recycling, 2017, 123, 230.
3 Park Y, Kim H, Pawar R C, et al. Materials Chemistry and Physics, 2018, 203, 118.
4 Li H, Song L, Liu H, et al. Ceramics International, 2019, 45(6), 7894.
5 Qi Y, Yin X, Zhang J. Solar Energy Materials and Solar Cells, 2016, 151, 30.
6 Lesyuk R, Klein E, Yaremchuk I, et al. Nanoscale, 2018, 10(44), 20640.
7 Jing J, Gu X, Zhang S, et al. CrystEngComm, 2019, 21(33), 4969.
8 Kwon Y T, Ryu S H, Shin J W, et al. ACS Applied Materials & Interfaces, 2019, 11(6), 6575.
9 Zhu Z, Zhu K, Guo J, et al. Colloid and Interface Science Communications, 2022, 48, 100619.
10 Zhang H, Zhou A, Wu Z, et al. Laser & Optoelectronics Progress, 2021, 58(15), 283 (in Chinese).
张化福, 周爱萍, 吴志明, 等. 激光与光电子学进展, 2021, 58(15), 283.
11 Zhong Q, Dahn J R, Colbow K. Physical Review B, 1992, 46(4), 2554.
12 Takeda H, Adachi K. Journal of the American Ceramic Society, 2007, 90(12), 4059.
13 Liu J, Xu Q, Shi F, et al. Applied Surface Science, 2014, 309, 175.
14 Guo J, Lu X, Gao C, et al. Journal of Functional Materials, 2015, 46(17), 17008 (in Chinese).
郭娟, 卢喜凤, 郜超军, 等. 功能材料, 2015, 46(17), 17008.
15 Kang Y, Wu X, Gao Q. ACS Sustainable Chemistry & Engineering, 2019, 7(4), 4210.
16 Zhao W, Yang Y, Zhang H. Chinese Journal of Inorganic Chemistry, 2012, 28(2), 314 (in Chinese).
赵文文, 杨勇, 张华. 无机化学学报, 2012, 28(2), 314.
17 Chao L, Bao L, Wei W, et al. Modern Physics Letters B, 2016, 30(7), 1650091.
18 Guo H, Liu W, Shu Q, et al. Materials Letters, 2022, 308, 131261.
19 Agrawal A, Cho S H, Zandi O, et al. Chemical Reviews, 2018, 118(6), 3121.
20 Yang G, Liu X X. Journal of Power Sources, 2018, 383, 17.
21 Hirano T, Nakakura S, Rinaldi F G, et al. Advanced Powder Technology, 2018, 29(10), 2512.
22 Nakakura S, Ogi T. Journal of Materials Chemistry C, 2021, 9(25), 8037.
23 Arne Magnéli, Blomberg B. Acta Chemica Scandinovica, 1951, 5(3), 372.
24 Tegg L, Cuskelly D, Studer A J, et al. The Journal of Physical Chemistry C, 2021, 125(15), 8185.
25 Li X, Xie R, Cao X, et al. Journal of the American Ceramic Society, 2018, 101(10), 4458.
26 Li C. Solid phase and molten salt method preparation of caesium tungstun bronze nano-powder and study on the optical properties. Master's Thesis, Taiyuan University of Technology, China, 2018(in Chinese).
李灿. 固相法和熔盐法制备铯钨青铜纳米粉体及其光学性能的研究. 硕士学位论文, 太原理工大学, 2018.
27 Lee J S, Liu H C, Peng G D, et al. Journal of Crystal Growth, 2017, 465, 27.
28 Yang G, Qi Y, Hu D, et al. Journal of Materials Science & Technology, 2021, 89, 150.
29 Wu Q, Yang G. Jian Cai Shi Jie Za Zhi, 2022, 43(5), 1 (in Chinese).
吴琼辉, 杨光. 建材世界, 2022, 43(5), 1.
30 Li M, Wang L, Yang F, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(3), 866 (in Chinese).
李梦超, 王璐, 杨帆, 等. 中国有色金属学报, 2022, 32(3), 866.
31 Song X, Liu J, Shi F, et al. Solar Energy Materials and Solar Cells, 2020, 218, 110769.
32 Haoyuan Z, Jingxiao L, Fei S, et al. Solar Energy Materials and Solar Cells, 2022, 238, 111612.
33 Yoshio S, Wakabayashi M, Adachi K. RSC Advances, 2020, 10(18), 10491.
34 Yang J, Liu J, Qiao Y, et al. CrystEngComm, 2020, 22(3), 573.
[1] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed