Experimental Study on Dynamic Compressive Behaviors of Carbon Fiber Reinforced Concrete After High Temperature Cooling
DU Gang1, LI Liang1,*, WANG Zichen1, WU Jun2, DU Xiuli1
1 Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China 2 School of Civil Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract: Carbon fiber reinforced concrete (CFRC) represents a novel high-performance construction material characterized by exceptional tensile strength and durability, thus holding significant potential for various engineering applications. Nevertheless, concrete materials, which may face extreme conditions like explosions and fires, will lead to the deterioration of their properties. Therefore, exploring the dynamic compressive behaviors of CFRC after exposure to high temperatures allows for a comprehensive understanding of material responses under extreme conditions, thus establishing a dependable basis for practical engineering applications. This research employed a split Hopkinson pressure bar (SHPB) with a 75 mm diameter to analyze the dynamic compression characteristics of CFRC with varying fiber volume ratios (0%, 1%, and 2%) after being subjected to different target temperatures (200 ℃, 400 ℃, 600 ℃, and 800 ℃) and subsequently cooled to room temperature. The results indicate that all types of concrete specimens exhibit an obvious strain rate effect following cooling at various target temperatures. Notably, as the carbon fiber content increases, the damage degree of the specimen gradually decreases, along with a corresponding reduction in dynamic peak strain. Moreover, elevating target temperatures corresponds to a decrease in dynamic peak stress, an increase in peak strain, and intensified specimen failure.
杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
DU Gang, LI Liang, WANG Zichen, WU Jun, DU Xiuli. Experimental Study on Dynamic Compressive Behaviors of Carbon Fiber Reinforced Concrete After High Temperature Cooling. Materials Reports, 2025, 39(6): 24010268-6.
1 Mao Z H, Ma Q K, Zhang J C, et al. Silicate Bulletin, 2022, 41(12), 4245 (in Chinese). 毛振豪, 马乾坤, 张继承, 等. 硅酸盐通报, 2022, 41(12), 4245. 2 Zhang T T, Fu Y, Kong X Q, et al. Concrete, 2021(9), 73(in Chinese). 张婷婷, 付莹, 孔祥清, 等. 混凝土, 2021(9), 73. 3 Gu L S, Liu D W, Liang J F, et al. Concrete, 2023(3), 74 (in Chinese). 顾连胜, 刘大为, 梁炯丰, 等. 混凝土, 2023(3),74. 4 Li W W, Yuan X L, Gao B, et al. Concrete, 2022(2), 51 (in Chinese). 李卫文, 袁小玲, 高波, 等. 混凝土, 2022(2), 51. 5 Zhu R Y. Study on mechanical properties of glass fiber modified recycled concrete after high temperature. Master's Thesis, Xiangtan University, 2021(in Chinese). 朱如意. 玻璃纤维改性再生混凝土高温后力学性能研究. 硕士学位论文, 湘潭大学, 2021. 6 Wang L W, Pang B J, Yang Z Q, et al. Journal of Building Materials, 2010, 13(5), 620 (in Chinese). 王立闻, 庞宝君, 杨震琦, 等. 建筑材料学报, 2010, 13(5), 620. 7 Zhang Y C, Hu X B, Bai C B. Concrete, 2001(9), 50(in Chinese). 张彦春, 胡晓波, 白成彬. 混凝土, 2001(9), 50. 8 Li Y, Ramanathan G K, Syu J, et al. International Journal of Protective Structures, 2024, 15(1), 43. 9 Yin J H, Zhou J Y, He Z Y. Building Science, 2021, 37(5), 113(in Chinese). 尹俊红, 周继阳, 赫中营. 建筑科学, 2021, 37(5), 113. 10 Mastali M, Dalvand A, Sattarifard A. Composites Part B:Engineering, 2017, 112, 74. 11 Chen Z, Yang J. Materials, 2021, 14(1), 94. 12 Tabatabaei Z S, Volz J S, Keener D I, et al. Materials & Design, 2014, 55, 212. 13 Zhang J L, Jiu Y Z. Composites Science and Engineering, 2022(8), 58(in Chinese). 张景丽, 纠永志. 复合材料科学与工程, 2022(8), 58. 14 Guo Z, Zhuang C, Li Z, et al. Composite Structures, 2021, 256, 113072. 15 Jin F J, Xu J Y, Su H Y. Concrete, 2013(4), 25(in Chinese). 金凤杰, 许金余, 苏灏扬. 混凝土, 2013(4), 25. 16 Wang Z C. Experimental study on dynamic compressive properties of carbon fiber reinforced concrete under high temperature conditions. Master's Thesis, Beijing University of Technology, China, 2022 (in Chinese). 王子晨. 高温条件下碳纤维混凝土动态压缩性能试验研究. 硕士学位论文, 北京工业大学, 2022. 17 Chen Q F, Li S S, Yu L Z, et al. Journal of Henan University of Engineering (Natural Science Edition), 2019, 31(4), 28(in Chinese). 陈庆丰, 李少帅, 余龙泽, 等. 河南工程学院学报(自然科学版), 2019, 31(4), 28. 18 Zhai Y, Xu J Y, Li W M, et al. Concrete, 2008(5), 16(in Chinese). 翟毅, 许金余, 李为民, 等.混凝土, 2008(5), 16. 19 Ren W, Xu J, Su H. Materials and Structures, 2016, 49(8), 3321. 20 Li X B, Jiao C J. Concrete, 2015(5), 23(in Chinese). 李习波, 焦楚杰. 混凝土, 2015(5), 23. 21 Li Z W, Xiao J Z, Xie Q H. Engineering Mechanics, 2017, 34(2), 78(in Chinese). 李志卫, 肖建庄, 谢青海. 工程力学, 2017, 34(2), 78. 22 He J Y, Yao L N. New Building Materials, 2006(4), 12(in Chinese). 何军拥, 姚立宁. 新型建筑材料, 2006(4), 12.