Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120075-7    https://doi.org/10.11896/cldb.24120075
  金属与金属基复合材料 |
周期性胞壁缺失对蜂窝夹层板平压力学性能影响分析及预测
孙彦彬1,*, 郭思臣1, 徐天时2
1 大连交通大学詹天佑学院(中车学院),辽宁 大连 116028
2 大连交通大学机械工程学院,辽宁 大连 116028
Analysis and Prediction of the Influence of Periodic Cell Wall Loss on the Mechanical Properties of Honeycomb Sandwich Panels Under Flat Pressure
SUN Yanbin1,*, GUO Sichen1, XU Tianshi2
1 Zhan Tianyou College of Dalian Jiaotong University(CRRC College), Dalian 116028, Liaoning, China
2 School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
下载:  全 文 ( PDF ) ( 8265KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 周期性胞壁缺失是一种典型的钎焊蜂窝夹层板缺陷,会导致蜂窝夹层板的力学性能降低。为了预测和评估胞壁缺失对蜂窝夹层板平压力学性能的影响,首先建立了无缺陷的蜂窝夹层板有限元模型,并通过理论模型对仿真模型进行了验证。进一步,将周期性胞壁缺失参数化,建立了含周期性胞壁缺失的蜂窝夹层板模型,分析了周期性胞壁缺失的中心距离、角度、长度和宽度对蜂窝板平压力学性能的影响。基于响应面法,构建了含周期性胞壁缺失的蜂窝夹层板平压强度预测模型,利用Sobol法开展了灵敏度分析。最后,采用核密度估计法确定缺陷蜂窝夹层板弹性模量和最大承载力的95%置信区间。结果表明,预测模型的精度良好,最大误差不超过1%。弹性模量对周期性缺失长度最敏感,周期性胞壁缺失中心距离、长度和宽度对最大承载力有显著影响。研究结果表明在95%置信区间情况下,含周期性胞壁缺失蜂窝夹层板弹性模量降至理想情况下的93.14%~99.06%,最大承载力降至94.11%~99.49%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙彦彬
郭思臣
徐天时
关键词:  含缺陷蜂窝夹层板  周期性胞壁缺失  平压强度  灵敏度分析  置信区间    
Abstract: Periodic cell wall loss is a typical defect in brazed honeycomb sandwich panels, which can lead to a decrease in the mechanical properties of the honeycomb sandwich panels. In order to predict and evaluate the impact of cell wall loss on the compressive mechanical properties of honeycomb sandwich panels, a defect free finite element model of honeycomb sandwich panels was first established, and the simulation model was validated through theoretical model. Furthermore, by parameterizing the periodic cell wall loss, a honeycomb sandwich panel model with pe-riodic cell wall loss was established, and the influence of the center distance, angle, length, and width of periodic cell wall loss on the flat compression mechanical properties of the honeycomb panel was explored. A prediction model for the compressive strength of honeycomb sandwich panels with periodic cell wall defects was constructed based on response surface methodology, and sensitivity analysis was conducted using Sobol method. Finally, the kernel density estimation method was used to determine the 95% confidence interval for the elastic modulus and maximum bearing capacity of the defective honeycomb sandwich panel. The results indicate that the accuracy of the prediction model is good, with a maximum error of no more than 1%. The elastic modulus is most sensitive to the periodic loss length, and the distance, length, while width of the periodic cell wall loss center have a significant impact on the maximum bearing capacity. At a 95% confidence interval, the elastic modulus of ho-neycomb sandwich panels with periodic cell wall loss drops to 93.14%—99.06% of the ideal value, and the maximum bearing capacity drops to 94.11%—99.49%.
Key words:  honeycomb sandwich panel with defects    periodic cell wall loss    flat crush resistance    sensitivity analysis    confidence interval
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  U270.2  
基金资助: 中国中车股份有限公司科技研究开发计划(2021CKB030)
通讯作者:  *孙彦彬,博士,大连交通大学机车车辆工程学院副教授、博士研究生导师。目前主要从事碰撞吸能材料和结构的设计与分析、非线性多目标优化技术等方面的研究。sundjtu@163.com   
引用本文:    
孙彦彬, 郭思臣, 徐天时. 周期性胞壁缺失对蜂窝夹层板平压力学性能影响分析及预测[J]. 材料导报, 2025, 39(23): 24120075-7.
SUN Yanbin, GUO Sichen, XU Tianshi. Analysis and Prediction of the Influence of Periodic Cell Wall Loss on the Mechanical Properties of Honeycomb Sandwich Panels Under Flat Pressure. Materials Reports, 2025, 39(23): 24120075-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120075  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120075
1 Cheng L. Study on the application of Honeycomb aluminum composites in passenger cars. Master’s Thesis, Shandong University, China, 2021 (in Chinese).
程乐. 蜂窝铝复合材料在客车上的应用研究. 硕士学位论文, 山东大学, 2021.
2 Wang Y Y, Wu R H. Journal of Aeronautical Materials, 2000(3), 172(in Chinese).
王玉瑛, 吴荣煌. 航空材料学报, 2000(3), 172.
3 Qiu K X. Physical modeling of cutting processes and study on cutting technology of aluminum honeycomb core material. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2017 (in Chinese).
邱坤贤. 铝蜂窝芯材料切削过程物理建模与工艺研究. 博士学位论文, 上海交通大学, 2017.
4 Gibson L J, Ashby M F. Cellular solids:structure and properties, Cambridge University Press, UK, 1997, pp. 128.
5 Zhang M, Yu J M. Welding Technology, 2003(6), 21 (in Chinese).
张敏, 于九明. 焊接技术, 2003(6), 21.
6 Geng Z C. Experimental investigation on mechanical properties of honeycomb sandwich structure with defects. Master’s Thesis, Southeast University, China, 2016 (in Chinese).
耿臻岑. 带缺陷蜂窝夹层结构的力学性能实验研究. 硕士学位论文, 东南大学, 2016.
7 Chen C, Lu T J, Fleck N A. Journal of the Mechanics and Physics of Solids, 1999, 47(11), 2235.
8 Kou D P, Yu J L, Zheng Z J. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6), 859 (in Chinese).
寇东鹏, 虞吉林, 郑志军. 力学学报, 2009, 41(6), 859.
9 Liu Y, Zhang X C. Explosion and Shock Waves, 2009, 29(3), 237(in Chinese).
刘颖, 张新春. 爆炸与冲击, 2009, 29(3), 237.
10 Wang A J, Mcdowell D L. International Journal of Mechanical Sciences, 2003, 45(11), 1799.
11 Silva M J, Gibson L J. International Journal of Mechanical Sciences, 1997, 39(5), 549.
12 Lu Z X, Huang J X. Aerospace Materials & Technology, 2017, 47(6), 73(in Chinese).
卢子兴, 黄纪翔. 宇航材料工艺, 2017, 47(6), 73.
13 Chen D H, Masuda K. Engineering Fracture Mechanics, 2017, 172, 61.
14 State Administration for Market Regulation, Test method for flatwise compression properties of sandwich constructions or cores:GB/T 1453-2022, Standards Press of China, China, 2022(in Chinese).
国家市场监督管理总局. 夹层结构或芯子平压性能试验方法:GB/T 1453-2022, 中国标准出版社, 2023.
15 Hu Y Q. Equivalent models research and numerical analysis of aluminum honeycomb sandwich plates. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2008 (in Chinese).
胡玉琴. 铝蜂窝夹层板等效模型研究及数值分析. 硕士学位论文, 南京航空航天大学, 2008.
16 Li X K, Sun Y B, Xu T S. Materials Reports, 2022, 36(S2), 372 (in Chinese).
李新康, 孙彦彬, 徐天时. 材料导报, 2022, 36(S2), 372.
17 Dou Y F, Wang Z W, Zhang W H. Journal of Projectiles, Rockets, Missiles and Guidance, 2007(5), 133 (in Chinese).
窦毅芳, 王中伟, 张为华. 弹箭与制导学报, 2007(5), 133.
18 Zhao P F, Wang L J, Chen Z Y, et al. Journal of Nanchang University(Engineering & Technology), 2014, 36(3), 247 (in Chinese).
赵鹏飞, 王丽娟, 陈宗渝, 等. 南昌大学学报(工科版), 2014, 36(3), 247.
19 Sobol I M. Mathematics and computers in simulation, 2001, 55(1-3), 271.
20 Zhao Y, Zhang X F, Zhou J Q. Proceedings of the CSEE, 2009, 29(31), 27 (in Chinese).
赵渊, 张夏菲, 周家启. 中国电机工程学报, 2009, 29(31), 27.
No related articles found!
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed