Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090087-7    https://doi.org/10.11896/cldb.24090087
  高分子与聚合物基复合材料 |
基于频域介电响应法的环氧胶浸纸芯体受潮状态分析研究
乔亚军1,*, 刘芸1, 潘欢1, 胡涛1, 周福升2,3
1 广州供电局变电管理三所,广州 511449
2 南方电网科学研究院有限责任公司,广州 510530
3 西安交通大学电气工程学院,西安 710049
Analysis of Moisture Condition in Epoxy Resin Impregnated Paper Core Using Frequency Domain Dielectric Response Method
QIAO Yajun1,*, LIU Yun1, PAN Huan1, HU Tao1, ZHOU Fusheng2,3
1 Guangzhou Power Supply Bureau Substation Management Section Three, Guangzhou 511449, China
2 Electric Power Research Institute, China Southern Power Grid, Guangzhou 510530, China
3 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 17240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶浸纸套管广泛应用于变压器等高压设备中,其绝缘性能对设备的安全运行至关重要。实际运行过程中,环氧胶浸纸芯体中的皱纹纸易在生产与运行过程中吸湿受潮,导致其绝缘性能下降,从而影响套管运行的可靠性。本工作构建了胶浸纸芯体频域介电响应测试平台,开展了不同受潮状态下的胶浸纸芯体频域介电响应检测研究。研究发现:在低频范围(0.001~0.1 Hz)内芯体的介电响应对受潮状态高度敏感,且不同受潮状态下的介电特性在此频段内表现出显著差异,特别是在0.046 Hz特征频率下极端受潮状态的胶浸纸芯体介质损耗值相较正常芯体激增约10倍,凸显了频域介电响应检测手段在低频段对受潮缺陷的灵敏反应能力;探究了自然受潮工况下胶浸纸芯体受潮缺陷的演变趋势,证实了工频介质损耗在胶浸纸芯体早期受潮检测中的不足与缺陷,发现了受潮初期的低频段介电特性可以有效预示潜在缺陷且其预警灵敏度显著优于工频测量;提取了不同受潮程度胶浸纸芯体在1 Hz特征频点处的介质损耗值并进行拟合分析,得到了胶浸纸芯体受潮评估的拟合曲线,提出了胶浸纸芯体早期受潮缺陷的评估方法。本工作可为在运胶浸纸套管的受潮评估提供可靠的方法和依据,有助于提升胶浸纸套管的运维水平,确保其安全稳定运行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔亚军
刘芸
潘欢
胡涛
周福升
关键词:  胶浸纸套管  频域介电谱  受潮  环氧胶浸纸    
Abstract: Epoxy resin-impregnated paper bushings are widely utilized in high-voltage equipment such as transformers, where their insulation perfor-mance is crucial for safe operation. During actual operation, the crepe paper within the resin-impregnated paper core is prone to moisture absorption during production and operation, leading to a decline in its insulation properties and subsequently affecting the reliability of bushing performance. This study established a frequency-domain dielectric response test platform for resin-impregnated paper cores and conducted research on the frequency-domain dielectric response detection of cores under various moisture conditions. The results indicate that the dielectric response of the core within the low-frequency range (0.001 Hz to 0.1 Hz) is highly sensitive to moisture content, and the dielectric characteristics under different moisture states exhibit significant differences within this frequency band. Notably, at the characteristic frequency of 0.046 Hz, the dielectric loss of an extremely moist resin-impregnated paper core surged approximately tenfold compared to a normal core, highlighting the sensitivity of frequency-domain dielectric response detection to moisture defects in the low-frequency range. The evolution trend of moisture defects in resin-impregnated paper cores under natural moisture conditions was investigated, confirming the limitations and deficiencies of power frequency dielectric loss in early moisture detection of such cores. It was discovered that the low-frequency dielectric characteristics in the early stages of moisture absorption can effectively predict potential defects, with a significantly higher warning sensitivity than power frequency measurements. The dielectric loss values of resin-impregnated paper cores with varying degrees of moisture at the characteristic frequency of 1 Hz were extracted and subjected to fitting analysis. A fitting curve for moisture assessment of resin-impregnated paper cores was obtained, and an evaluation method for early moisture defects in such cores was proposed. This study provides a reliable method and basis for the moisture assessment of in-service resin-impregnated paper bushings, contributing to enhanced maintenance practices and ensuring their safe and stable operation.
Key words:  resin-impregnated paper bushing    frequency domain spectroscopy    moisture absorption    epoxy resin-impregnated paper
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TM855  
基金资助: 国家自然科学基金(52107028);中国南方电网有限责任公司创新项目(030100KK52222048(GDKJXM20222370))
通讯作者:  *乔亚军,广东电网有限责任公司广州供电局高级工程师。目前主要从事变电设备的技术管理、故障和缺陷分析及处理、停电检测与在线监测、新技术和新设备研究应用及推广、相关设备及工作的智能化与数字化等工作。qyajun0105@163.com   
引用本文:    
乔亚军, 刘芸, 潘欢, 胡涛, 周福升. 基于频域介电响应法的环氧胶浸纸芯体受潮状态分析研究[J]. 材料导报, 2025, 39(21): 24090087-7.
QIAO Yajun, LIU Yun, PAN Huan, HU Tao, ZHOU Fusheng. Analysis of Moisture Condition in Epoxy Resin Impregnated Paper Core Using Frequency Domain Dielectric Response Method. Materials Reports, 2025, 39(21): 24090087-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090087  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090087
1 Wu W, Chen S Y, Zongmeng J Z. Materials Reports, 2017, 31(20), 21 (in Chinese).
吴唯, 陈诗英, 宗孟静子. 材料导报, 2017, 31(20), 21.
2 Fu J G, Zhu D M, Luo F, et al. Materials Reports, 2012, 26(18), 58 (in Chinese).
伏金刚, 朱冬梅, 罗发, 等. 材料导报, 2012, 26(18), 58.
3 Wu J J, Xie J W, Wang Z J, et al. Materials Reports, 2014, 28(14), 91 (in Chinese).
吴金剑, 谢佳武, 王志娟, 等. 材料导报, 2014, 28(14), 91.
4 Ke C J, Ma Z Q, Yang X, et al. Electrical Engineering, 2016(10), 59(in Chinese).
柯春俊, 马志钦, 杨贤, 等. 电气技术, 2016(10), 59.
5 Shen Q B, Wang B, Wang H B. Plastics Science and Technology, 2023, 51(7), 18(in Chinese).
沈琪斌, 王波, 王海滨. 塑料科技, 2023, 51(7), 18.
6 Li J Z, Li P, Zhang S Q, et al. Proceedings of the CSEE, 2023, 43(12), 4811 (in Chinese).
李金忠, 李鹏, 张书琦, 等. 中国电机工程学报, 2023, 43(12), 4811.
7 Zhu Q D, Zhu M Z, Gu C L, et al. Insulating Materials, 2022, 55(10), 86(in Chinese).
朱庆东, 朱孟兆, 顾朝亮, 等. 绝缘材料, 2022, 55(10), 86.
8 Yang D Q, Li L F, Liu Q S, et al. Advanced Technology of Electrical Engineering and Energy, 2022, 41(10), 54(in Chinese).
杨定乾, 李龙飞, 刘清松, 等. 电工电能新技术, 2022, 41(10), 54.
9 Su Z, Zhang Y, Du Y, et al. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1.
10 Ansari T H, Vahedi A. IET Electric Power Applications, 2023, 18(5), 517.
11 Zhang H L, Huang N, Liu P, et al. Transactions of China Electrotechnical Society, 2025, 40(1), 312 (in Chinese).
张宏亮, 黄宁, 刘鹏, 等. 电工技术学报, 2025, 40(1), 312.
12 Zhang H, Wan B Q, Hu W, et al. Electric Power Engineering Technology, 2022, 41(3), 178(in Chinese).
张寒, 万保权, 胡伟, 等. 电力工程技术, 2022, 41(3), 178.
13 Ding N, Mu H B, Liang Z J, et al. Transactions of China Electrotechnical Society, 2022, 37(11), 2716(in Chinese).
丁宁, 穆海宝, 梁兆杰, 等. 电工技术学报, 2022, 37(11), 2716.
14 Chen X L, Fu X T, Wu Q D, et al. Electric Power Engineering Technology, 2022, 41(2), 149(in Chinese).
陈晓琳, 符小桃, 吴乾东, 等. 电力工程技术, 2022, 41(2), 149.
15 Xiao Y, Xu Z M, Zhang J Y, et al. High Voltage Apparatus, 2021, 57(9), 116(in Chinese).
肖遥, 许佐明, 张晋寅, 等. 高压电器, 2021, 57(9), 116.
16 Zhang S M, Shi G Y, Peng Y X. Non-Destructive Testing, 2021, 43(9), 16(in Chinese).
张绍明, 施广宇, 彭宇霞. 无损检测, 2021, 43(9), 16.
17 Zhang Y T, Qi B, Lin Y D, et al. Electric Power Engineering Technology, 2021, 40(2), 135(in Chinese).
张毅涛, 齐波, 林元棣, 等. 电力工程技术, 2021, 40(2), 135.
18 Liu W, Li Y, Zhang L, et al. Electric Power Engineering Technology, 2020, 39(6), 143(in Chinese).
刘伟, 李洋, 张璐, 等. 电力工程技术, 2020, 39(6), 143.
19 Yan H J, Li D J, Zhang L, et al. Guangxi Electric Power, 2020, 43(3), 8(in Chinese).
颜海俊, 黎大健, 张磊, 等. 广西电力, 2020, 43(3), 8.
20 Yan M, Li M, Zhang S G, et al. Insulating Materials, 2024, 57(6), 54(in Chinese)
颜猛, 李敏, 张思刚, 等. 绝缘材料, 2024, 57(6), 54.
21 Walczak K, Gielniak J. Energies, 2021, 14(13), 4016.
22 Pan Z C, Han X D, Liu D J, et al. Insulators and Surge Arresters, 2024(3), 173(in Chinese).
潘志城, 韩晓东, 刘德建, 等. 电瓷避雷器, 2024(3), 173.
23 Bhutada S, Joshi S, et al. Indian Journal of Science and Technology, 2017, 10(21), 1.
24 Christina A J, Salam M A, Rahman Q M, et al. Renewable and Sustai-nable Energy Reviews, 2018, 82(Part 1), 1442.
25 Velásquez R M A, Lara J V M. Engineering Failure Analysis, 2018, 94, 27.
26 Zhang D, Feng X, Yang Z, et al. IET Generation Transmission & Distribution, 2023, 17(17), 3789.
27 Chen J D, Liu Z Y. Dielectric physics, Mechanical Industry Press, China, 1982, pp. 154(in Chinese).
陈季丹, 刘子玉. 电介质物理学, 机械工业出版社, 1982, pp. 154.
28 Kong C, Zhang D N, Tian J, et al. Smart Power, 2020, 48(4), 119(in Chinese).
孔灿, 张大宁, 田杰, 等. 智慧电力, 2020, 48(4), 119.
29 Liang Z, Sun Y, Cheng H, et al. Frontiers in Energy Research, 2024, 11, 1348433.
30 Liao R J, Hao J, Yang L J, et al. Proceedings of the CSEE, 2010, 30(22), 113(in Chinese).
廖瑞金, 郝建, 杨丽君, 等. 中国电机工程学报, 2010, 30(22), 113.
31 Liu P, Jin H Y, Shi H C, et al. High Voltage Apparatus, 2009, 45(5), 6(in Chinese).
刘鹏, 金海云, 石惠承, 等. 高压电器, 2009, 45(5), 6.
32 Ladislas E N. Influence of moisture on the insulation of bushings and its mechanism. Master’s Thesis, North China Electric Power University, China, 2019 (in Chinese).
Ladislas E N. 水分对套管绝缘特性的影响及其机理. 硕士学位论文, 华北电力大学(北京), 2019.
33 Hao X Y. China Strategic Emerging Industry, 2017(48), 167 (in Chinese).
郝小阳. 中国战略新兴产业, 2017(48), 167.
34 Ansari T H, Vahedi A. IET Electric Power Applications, 2023, 18(5), 517.
35 Du Y Y. Assessment of moisture status and thermal aging in oil-impregnated paper condenser bushings based on frequency domain spectroscopy. Master’s Thesis, Chongqing University, China, 2018 (in Chinese).
杜永永. 基于频域介电响应的油纸电容式套管受潮和老化状态评估. 硕士学位论文, 重庆大学, 2018.
No related articles found!
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed