Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080069-8    https://doi.org/10.11896/cldb.24080069
  金属与金属基复合材料 |
含氧环境中三元复配缓蚀剂的缓蚀性能与机理研究
刘万亨1,2,3, 宋永辉1,2,*, 雷自刚1,2,3, 魏蓉3, 张娟涛3
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省有色金属资源绿色开发利用重点实验室,西安 710055
3 中国石油集团工程材料研究院,西安 710077
Corrosion Inhibition Performance and Mechanism of Ternary Complex Corrosion Inhibitor in Oxygenated Environment
LIU Wanheng1,2,3, SONG Yonghui1,2,*, LEI Zigang1,2,3, WEI Rong3, ZHANG Juantao3
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Shaanxi Key Laboratory of Green Development and Utilization of Non-ferrous Metal Resources, Xi’an 710055, China
3 CNPC Engineering Technology R & D Company Limited, Xi’an 710077, China
下载:  全 文 ( PDF ) ( 11196KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用ZnCl2、酒石酸钾钠(PST)和磷酸三丁酯(TBP)复配了一种三元抗氧缓蚀剂ZPT,采用静态失重法、电化学法及表面分析等测试手段研究了模拟矿化水中A3钢的耐腐蚀性能及ZPT的缓蚀机理。在溶解氧浓度为7.31 mg/L的模拟矿化水中添加900 mg/L ZPT时,A3钢的腐蚀速率由0.239 3 mm/a降低至0.031 8 mm/a,缓蚀率高达86.71%。溶液pH在7~9时缓蚀剂有着较高的缓蚀率,处于强酸强碱环境中时缓蚀剂性能会有所下降。电化学测试表明,阻抗随ZPT浓度升高而增大,缓蚀剂以抑制阴极反应为主,当添加量为900 mg/L时容抗弧半径最大,自腐蚀电流密度最小,阴极部分曲线斜率最大。添加缓蚀剂钢片表面变得平整光滑,腐蚀深度减小。金属表面膜由TBP-Zn2+、PST-Zn2+配位化合物和Zn(OH)2沉淀膜以及铁的氧化物等组成,加入ZPT后Zn2+会与TBP和PST中的磷酸基团和酒石酸根反应形成TBP-Zn2+、PST-Zn2+配位化合物,还会与阴极产生的OH-反应生成Zn(OH)2沉淀膜,三者在金属表面可以相互补全使得保护膜更加致密完整,在缓蚀剂保护膜未覆盖区域会有铁的氧化物生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘万亨
宋永辉
雷自刚
魏蓉
张娟涛
关键词:  复配  氧腐蚀  缓蚀率  缓蚀机理    
Abstract: In this work, zinc chloride (ZnCl2), potassium sodium tartrate (PST) and tributyl phosphate (TBP) were compounded into a ternary antioxidant corrosion inhibitor ZPT, meanwhile, the corrosion resistance of A3 steel in simulated mineralized water and the corrosion inhibition mechanism of ZPT were investigated by static weightlessness, electrochemical method and surface analysis method. The corrosion rate of A3 steel was reduced from 0.239 3 mm/a to 0.031 8 mm/a with a corrosion inhibition rate of 86.71% by adding 900 mg/L ZPT to the simulated mi-neralized water with a dissolved oxygen concentration of 7.31 mg/L. The corrosion resistance of A3 steel in simulated mineralized water was also investigated by static gravimetry and electrochemical and surface analysis tests. When the pH value of the solution is 7—9, the corrosion inhibitor has a high corrosion inhibition rate, while it’s corrosion inhibition performance decreases in a strong acid and alkali environment. Electrochemical tests showed that impedance increased with the increase of ZPT concentration, and the corrosion inhibitor mainly inhibited the cathodic reaction. When the mass fraction of ZPT was 900 mg/L, the capacitive arc radius was the largest, the self-corrosion current density was the smallest, and the slope of the cathodic portion of the curve was the largest. After adding corrosion inhibitor, the surface of steel plate became flat and smooth, and the corrosion depth was reduced. The metal surface film consisted of TBP-Zn2+, PST-Zn2+ coordination compound, Zn(OH)2 precipitation film and iron oxide. With the addition of ZPT, Zn2+ will react with phosphate and tartaric acid in TBP and PST to form TBP-Zn2+ and PST-Zn2+ coordination compounds, and also react with OH- generated by the cathode to form Zn(OH)2 precipitation film, these three are complementary to each other on the metal surface to make the protective film more dense and complete, and iron oxides will be generated in the area where is not be covered by corrosion inhibitor’s protective film.
Key words:  compounding    oxygen corrosion    corrosion inhibition rate    corrosion inhibition mechanism
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TG174.42  
通讯作者:  宋永辉,西安建筑科技大学冶金工程学院教授、博士研究生导师。目前主要从事黄金等贵金属冶金、二次资源综合利用及新材料制备等方向的研究。syh1231@126.com   
作者简介:  刘万亨,西安建筑科技大学冶金工程学院硕士研究生,在宋永辉教授的指导下进行研究。目前主要研究领域为腐蚀与防护。
引用本文:    
刘万亨, 宋永辉, 雷自刚, 魏蓉, 张娟涛. 含氧环境中三元复配缓蚀剂的缓蚀性能与机理研究[J]. 材料导报, 2025, 39(16): 24080069-8.
LIU Wanheng, SONG Yonghui, LEI Zigang, WEI Rong, ZHANG Juantao. Corrosion Inhibition Performance and Mechanism of Ternary Complex Corrosion Inhibitor in Oxygenated Environment. Materials Reports, 2025, 39(16): 24080069-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080069  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080069
1 Yang J Z, Li H X, Zou H L, et al. Materials Protection, 2018, 51(12), 136(in Chinese).
杨军征, 李慧心, 邹洪岚, 等. 材料保护, 2018, 51(12), 136.
2 Gulbrandsen E, Kvarekvål J, Miland H. Corrosion, 2005, 61(11), 1086.
3 Wang B, Xu L N, Li D Y, et al. Journal of Materials Engineering, 2017, 45(5), 38(in Chinese).
王贝, 许立宁, 李东阳, 等. 材料工程, 2017, 45(5), 38.
4 Nawaz A, Deen K M, Ishraq S, et al. International Journal of Electrochemical Science, 2024, 19(8), 100680.
5 Hu J, Xiong Q, Chen L, et al. Corrosion Science, 2021, 179, 109173.
6 Zhang C F, Hu J Y, Zhong X K, et al. Surface Technology, 2020, 49(11), 66(in Chinese).
张晨峰, 扈俊颖, 钟显康, 等. 表面技术, 2020, 49(11), 66.
7 Liu F G, Du M. Acta Metallurgica Sinica, 2007, 43(9), 5(in Chinese).
刘福国, 杜敏. 金属学报, 2007, 43(9), 5.
8 Li J L, Wang P C, Shen Y B, et al. Applied Chemical Industry, 2022, 51(12), 3576(in Chinese).
李俊莉, 王鹏程, 沈燕宾, 等. 应用化工, 2022, 51(12), 3576.
9 Kang B S, Qi X, Qi Q Y, et al. Plating and Finishing, 2023, 45(3), 1(in Chinese).
康保生, 齐心, 齐千一, 等. 电镀与精饰, 2023, 45(3), 1.
10 Bi J Y, Song S P, Ding X, et al. Materials Reports, 2023, 37(19), 186(in Chinese).
毕江元, 宋述鹏, 丁兴, 等. 材料导报, 2023, 37(19), 186.
11 Yan H, Dai S, Liu P, et al. Corrosion Science, 2023, 227, 11750.
12 Li L Z, Peng Y C, Li F C, et al. Surface Technology, 2022, 51(5), 139(in Chinese).
李俐枝, 彭云超, 李丰渟, 等. 表面技术, 2022, 51(5), 139.
13 Bian Y W. Study on preparation and properties of corrosion inhibitor in high mineralization and oxygenic environment. Master's Thesis, China University of Petroleum (East China), China, 2021(in Chinese).
边宇薇. 高矿化度有氧环境中缓蚀剂的制备与性能研究. 硕士学位论文, 中国石油大学(华东), 2021.
14 Meeusen M, Zardet L, Homborg A M, et al. Corrosion Science, 2020, 173, 108780.
15 Guo L, Tan J, Kaya S, et al. Journal of Colloid and Interface Science, 2020, 570, 116.
16 Zhang W, Li H J, Chen L, et al. Desalination, 2020, 486, 114482.
17 Zhang W, Wang Y, Li H J, et al. The Journal of Physical Chemistry C, 2019, 123(23), 14480.
18 Zhou Z, Min X, Wan S, et al. Results in Engineering, 2023, 17, 100971.
19 Rao B V A, Rao S S. Materials and Corrosion, 2009, 61, 285.
20 Pech-Canul M A, Bartolo-Pérez P. Surface & Coatings Technology, 2004, 184(2-3), 133.
21 Luo Z G, Zhang Y, Wang H, et al. Corrosion Science, 2023, 227, 111705.
22 Ochoa N, Baril G, Moran F, et al. Journal of Applied Electrochemistry, 2002, 32(5), 497.
23 Ochoa N, Moran F, Pébère N, et al. Corrosion Science, 2005, 47(3), 593.
24 Ma Y G. A study on performance of antioxidant corrosion inhibitor in oil field. Master's Thesis, Xi’an Shiyou University, China, 2019 (in Chinese).
马昱刚. 油田抗氧缓蚀剂的性能研究. 硕士学位论文, 西安石油大学, 2019.
25 Liu Y C, Zhang Y L, Yuan J M. Engineering Failure Analysis, 2014, 45, 225.
[1] 毕江元, 宋述鹏, 丁兴, 柯德庆, 周和荣. AMT及其复配剂对青铜合金的缓蚀机理研究[J]. 材料导报, 2024, 38(11): 23020250-6.
[2] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[3] 王业飞, 钱程, 杨震, 丁名臣, 王任卓. 新型喹啉季铵盐酸化缓蚀剂氯化苯甲酰甲基喹啉(PCQ)的合成及缓蚀性能[J]. 材料导报, 2019, 33(4): 699-704.
[4] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed