Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24060212-7    https://doi.org/10.11896/cldb.24060212
  无机非金属及其复合材料 |
高温高压下固井水泥石力学行为及其关键影响因素
庞学玉1,2, 李海龙2,3, 黄贤斌1,2, 刘敬平1,2, 吕开河1,2, 孙金声1,2,*
1 深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580
2 中国石油大学(华东)石油工程学院,山东 青岛 266580
3 中国石油集团工程技术研究院有限公司,北京 102206
Mechanical Behaviors of Well Cement Under High Temperature and High Pressure Conditions and the Crucial Influencing Factors
PANG Xueyu1,2, LI Hailong2,3, HUANG Xianbin1,2, LIU Jinping1,2, LYU Kaihe1,2, SUN Jinsheng1,2,*
1 State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
3 CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
下载:  全 文 ( PDF ) ( 8610KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固井水泥环在深部及超深部地层以及非常规页岩油气地层中服役时,会遭受到井下严苛的高温高压环境影响。深入了解不同影响因素下固井水泥石的力学行为,对固井水泥体系优化设计以及确保井筒密封完整性至关重要。本工作主要探究了温度环境、测试压力以及含水状态对水泥石力学行为的影响规律。研究结果表明,不同温度环境下水泥石力学行为因水泥石干燥状态、高温暴露时间以及围压大小等因素而呈现出极为复杂的特性。单轴加载条件下,测试温度对水泥石力学行为的影响相对较小;三轴加载条件下,水泥石屈服强度和极限强度均随测试温度升高而大幅降低。低围压条件下,干燥和饱和水泥石在不同温度下均呈现出脆性破坏特征,但前者屈服强度和极限抗压强度远高于后者;高围压条件下,干燥水泥石在不同温度下均呈现出明显应变硬化和延性破坏特征,而饱和水泥石仍然为脆性破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞学玉
李海龙
黄贤斌
刘敬平
吕开河
孙金声
关键词:  固井水泥  含水状态  高温高压  变形行为    
Abstract: Well cements, which serve in deep and ultra-deep formations as well as unconventional shale formations, are subjected to harsh (high temperature and high pressure) downhole environments. An in-depth study of the mechanical behaviors of well cements under different influencing factors is essential for the optimal design of cementing systems and for ensuring the seal integrity of the wellbore. This work mainly investigated the influence of temperature conditions, testing pressure, and water content on the mechanical behavior of set cement. The experimental results show that the mechanical behavior of set cement, under varying temperature conditions, exhibits complex characteristics, which are influenced prominently by factors such as its drying state, duration of high-temperature exposure, and confining pressure. Under uniaxial loading, the influence of testing temperature on the mechanical behavior of set cement is relatively small. However, under triaxial loading, both the yield strength and ultimate strength of set cement decrease significantly with increasing of testing temperature. At low confining pressures, both dry and saturated set cements exhibit brittle failure characteristics at different temperatures, but the yield strength and ultimate strength of the former are much higher than those of the latter. Conversely, under high confining pressures, dry set cement displays notable strain hardening and ductile failure characteristics, whereas saturated set cement still exhibits brittle failure.
Key words:  well cement    water content    high temperature and high pressure    deformation behavior
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TE256  
基金资助: 国家自然科学基金基础科学中心项目“超深特深层油气钻采流动调控”(52288101);中国石油大学(华东)深层油气全国重点实验室自主研究课题(SKLDOG2024-ZYTS-11)
通讯作者:  *孙金声,博士,中国工程院院士,主要从事钻完井工作液、储层保护、防漏堵漏理论与技术等方面的研究工作。sunjsdri@cnpc.com.cn   
作者简介:  庞学玉,博士,中国石油大学(华东)石油工程学院油气井工程研究所所长,主要从事固井水泥材料科学与应用、井筒水泥环封隔完整性领域的研究工作。
引用本文:    
庞学玉, 李海龙, 黄贤斌, 刘敬平, 吕开河, 孙金声. 高温高压下固井水泥石力学行为及其关键影响因素[J]. 材料导报, 2025, 39(12): 24060212-7.
PANG Xueyu, LI Hailong, HUANG Xianbin, LIU Jinping, LYU Kaihe, SUN Jinsheng. Mechanical Behaviors of Well Cement Under High Temperature and High Pressure Conditions and the Crucial Influencing Factors. Materials Reports, 2025, 39(12): 24060212-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060212  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24060212
1 Wu J. Research on the cement sheath seal and integrity. Master’s Thesis, Yangtze University, China, 2014 (in Chinese).
吴健. 固井水泥环密封完整性研究. 硕士学位论文, 长江大学, 2014.
2 Pang X Y, Qin J K, Wang Z G, et al. Natural Gas Industry, 2023, 43(7), 90(in Chinese).
庞学玉, 秦建鲲, 王治国, 等. 天然气工业, 2023, 43(7), 90.
3 Li H L, Pang X Y, Chen X R, et al. In:ARMA US Rock Mechanics/Geomechanics Symposium. ARMA, 2022.
4 Guo X Y, Bu Y H, Li J, et al. Natural Gas Industry, 2013, 33(11), 86 (in Chinese).
郭辛阳, 步玉环, 李娟, 等. 天然气工业, 2013, 33(11), 86.
5 Zeng Y J, Liu R G, Li X J, et al. Journal of Petroleum Science and Engineering, 2019, 176, 811.
6 Pang X Y, Sun L J, Chen M, et al. Cement and Concrete Research, 2022, 156, 106776.
7 Pang X Y, Qin J K, Sun L J, et al. Cement and Concrete Research, 2021, 144, 106424.
8 Lima V N, de Andrade S F, Skadsem H J, et al. Journal of Petroleum Science and Engineering, 2022, 208, 109769.
9 Li H L, Pang X Y, Zhang J, et al. Construction and Building Materials, 2023, 393, 131970.
10 Lima V N, Skadsem H J, Beltrán-Jiménez K, et al. Journal of Petroleum Science and Engineering, 2022, 219, 111055.
11 He T, Wang T T, Xie D Z, et al. Cement and Concrete Composites, 2022, 125, 104322.
12 Zheng Y Z, Xu B Q, Pu J H, et al. Natural Gas Industry, 2017, 37(1), 119 (in Chinese).
郑友志, 徐冰青, 蒲军宏, 等. 天然气工业, 2017, 37(1), 119.
13 Li Z Y, Guo X Y, Han L, et al. Natural Gas Industry, 2007, 27(9), 62 (in Chinese).
李早元, 郭小阳, 韩林, 等. 天然气工业, 2007, 27(9), 62.
14 Wang L, Zeng Y J, Zhang Q Q, et al. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6), 88 (in Chinese).
王磊, 曾义金, 张青庆, 等. 中国石油大学学报 (自然科学版), 2018, 42(6), 88.
15 Qin D. Mechanical response and crack expansion of cementite in oil wells under loads. Master’s Thesis, Southwest Petroleum University, China, 2019 (in Chinese).
秦丹. 载荷作用下油井水泥石力学响应及裂纹扩展研究. 硕士学位论文, 西南石油大学, 2019.
16 Li H L, Pang X Y, Ghabezloo S, et al. Journal of Materials Research and Technology, 2023, 26, 3992.
17 Ghabezloo S, Sulem J, Guédon S, et al. Cement and Concrete Research, 2008, 38(12), 1424.
18 Jennings H M, Thomas J J, Rothstein D, et al. Cements as Porous Materials, Wiley, Germany, 2002, pp.2971.
19 Zhang Z Y, Hou L H, Luo X, et al. Natural Gas Geoscience, 2021, 32(12), 1849 (in Chinese).
张紫芸, 侯连华, 罗霞, 等. 天然气地球科学, 2021, 32(12), 1849.
20 Wang S S, Xu W, Yang L. Construction and Building Materials, 2019, 224, 19.
21 Ran S P, Wang S S, Xiang Z P. Journal of China Three Gorges University (Natural Sciences), 2015, 37(6), 20(in Chinese).
冉少鹏, 王苏生, 向志鹏. 三峡大学学报:自然科学版, 2015, 37(6), 20.
22 Ding J D, Shen J Y, Zhang S, et al. Drilling Fluid & Completion Fluid, 2020, 37(6), 763 (in Chinese).
丁嘉迪, 沈吉云, 张硕, 等. 钻井液与完井液, 2020, 37(6), 763.
23 Skoczylas F, Burlion N, Yurtdas I. Cement and Concrete Research, 2007, 29(5), 383.
24 Yurtdas I, Burlion N, Skoczylas F. Cement and Concrete Research, 2004, 34(7), 1131.
25 Yang H Z, Wang L, Yang C H, et al. Cement and Concrete Research, 2024, 175, 107355.
26 Xu F, Xu Z P, Tang S C, et al. Journal of Energy Storage, 2022, 45, 103775.
27 Zhou S M, Liu R G, Zeng H, et al. Fuel, 2019, 250, 132.
28 Zhang X Y, Wang L, Yang C H, et al. Energies, 2021, 14(21), 7162.
[1] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[4] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[5] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[6] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[7] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[8] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[9] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[10] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[11] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[12] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[13] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[14] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[15] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[3] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[4] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[5] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[6] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[7] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[8] ZHANG Tao, SUN Youyi, LIU Yaqing. Preparation and Electrochemical Performance of Chitosan/Polyvinyl Alcohol-basedComposite Carbon Nanofibers by Electrospinning[J]. Materials Reports, 2019, 33(Z2): 516 -520 .
[9] CONG Zhuohong, CHEN Hengda, ZHENG Nanxiang, ZHOU Wanjun. Surface Texture of Cement Concrete Pavement: a Review[J]. Materials Reports, 2020, 34(9): 9110 -9116 .
[10] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed