Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090135-8    https://doi.org/10.11896/cldb.22090135
  金属与金属基复合材料 |
强剪切对单层晶极薄带轧制变形行为的影响
陈守东1,2,3,*, 卢日环4, 李杰1,3, 孙建1,3
1 铜陵学院机械工程学院,安徽 铜陵 244061
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
3 铜陵学院工程液压机器人安徽普通高校重点实验室,安徽 铜陵 244061
4 燕山大学国家冷轧板带装备及工艺工程技术研究中心,河北 秦皇岛 066004
Effect of Strong Shear on Micro-rolling Deformation Behavior of Single Layer Grain Foil
CHEN Shoudong1,2,3,*, LU Rihuan4, LI Jie1,3, SUN Jian1,3
1 School of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3 Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling 244061, Anhui, China
4 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, Yanshan University, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 16944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为确定最优的极薄带轧制工艺,本研究深入分析了强剪切对轧制单层晶极薄带微观变形行为和晶体转动演化的影响。采用基于位错滑移机制的晶体塑性有限元模型进行模拟,最大异速比达到1.5。建立了晶粒取向随机分布的单层晶极薄带轧制模型,以探究少晶组织的晶界作用特性。结果表明:强剪切导致单层晶极薄带轧制微观变形和晶体转动表现出显著的局部化。强剪切促进了晶粒的剪切变形,使得晶界的协调变形能力增强。在轧制区施加强剪切变形,可使已启动滑移得到扩展,主滑移带缩窄分散形成新的次滑移带,滑移更加集中和各向异性。变形后晶粒取向主要绕箔材宽度方向发生转动和分散,强剪切使转动角度增大和分散点更加集中稳定。模拟表明强剪切严重影响单层晶极薄带轧制变形的各向异性,进而导致择优取向、滑移局部化以及非均匀应力-应变分布。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈守东
卢日环
李杰
孙建
关键词:  极薄带轧制  强剪切  变形行为  局部化  晶体塑性有限元    
Abstract: The effect of strong shear on the micro-deformation behavior and crystal rotation evolution of rolling single layer crystal foil was deeply analyzed in order to determine the optimal foil rolling process. A crystal plastic finite element model based on dislocation slip mechanism was used for simulation, and the maximum differential speed ratio reached 1.5. A single layer crystal foil rolling model with random grain orientation was established to investigate the grain boundary interaction characteristics of oligocrystalline microstructure. The results show that the micro-deformation and crystal rotation are significantly localized by strong shear. The shear deformation of grain is promoted by strong shear and the coordinated deformation capacity of grain boundary is enhanced. The slip is more concentrated and anisotropic because of initiated slip can be extended and the main slip band shrinks and disperses to form a new secondary slip band by the shear deformation which is strengthened in the rol-ling zone. After foil rolling, the grain orientation mainly rotates and disperses around the width of the foil. The rotation angle increases and the dispersion point becomes more concentrated and stable by strong shear. The simulation results show that the anisotropy of single layer crystal foil rolling deformation is seriously affected by strong shearing, which leads to preferred orientation, slip localization and non-uniform stress-strain distribution.
Key words:  foil rolling    strong shear    deformation behavior    localization    crystal plasticity finite element
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG335.5  
基金资助: 国家自然科学基金(51804219; 52005432);安徽省自然科学基金(1808085QE161);安徽省重点研究与开发计划项目(202004a05020011);安徽省高校优秀青年人才支持计划项目(gxyq2022093);安徽省高校优秀青年科研项目(2022AH030153);铜陵学院重点培育项目(2020tlxyxs33)
通讯作者:  陈守东,铜陵学院机械工程学院副教授、博士。2010年铜陵学院材料成型及控制工程专业本科毕业,2013年昆明理工大学材料学专业硕士毕业,2016年东北大学材料加工工程专业博士毕业。目前主要从事晶体塑性有限元、极薄带轧制成形及层状金属复合材料的研究工作。发表论文40余篇,包括International Journal of Mechanical Sciences、Transactions of Nonferrous Metals Society of China、《金属学报》《材料导报》中英文版等。csdong0910@sina.com   
引用本文:    
陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
CHEN Shoudong, LU Rihuan, LI Jie, SUN Jian. Effect of Strong Shear on Micro-rolling Deformation Behavior of Single Layer Grain Foil. Materials Reports, 2024, 38(7): 22090135-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090135  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090135
1 Duffner F, Kronemeyer N, Tübke J, et al. Nature Energy, 2021, 6, 123.
2 Masias A, Marcicki J, Paxton W A. ACS Energy Letters, 2021, 6(2), 621.
3 Zhang X H, Li Z, Luo L G, et al. Energy, 2022, 238, 121652.
4 Shim H C, Van Tran C, Hyun S, et al. Applied Surface Science, 2021, 564, 150416.
5 He Y Q, Yuan X, Zhang G W, et al. Science of the Total Environment, 2021, 766, 142382.
6 Chen J Q, Hu X L, Gao H T, et al. Journal of Materials Science & Technology, 2022, 99(4), 9.
7 Chen J Q, Wang X G, Gao H T, et al. Surface and Coatings Technology, 2021, 410, 126881.
8 Chen J Q, Zhao Y, Gao H T, et al. Surface and Coatings Technology, 2021, 421, 127369.
9 Prakash A, Weygand S M, Riedel H. Computational Materials Science, 2009, 45(3), 744.
10 Chan W L, Fu M W, Lu J, et al. Materials Science and Engineering A, 2010, 527(24-25), 6638.
11 Kanjarla A K, Van Houtte P, Delannay L. International Journal of Plasticity, 2010, 26, 1220.
12 Keller C, Hug E, Habraken A M, et al. International Journal of Plasticity, 2012, 29, 155.
13 Grogan J A, Leen S B, Mchugh P E. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 61.
14 Özdemir I. International Journal of Mechanical Sciences, 2014, 87, 52.
15 Yoshida K. International Journal of Mechanical Sciences, 2014, 83, 48.
16 Fallahi A, Ataee A. Materials Science and Engineering A, 2010, 527, 4576.
17 Guan Y J, Chen B, Zou J W, et al. International Journal of Plasticity, 2017, 88, 70.
18 Lv C, Deng G Y, Tieu A K, et al. Acta Materialia, 2011, 59, 3581.
19 Li L, Shen L M, Proust G, et al. Materials Science and Engineering A, 2013, 579, 41.
20 Zhang H M, Dong X H, Wang Q, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(11), 3362.
21 Deng G Y, Tieu A K, Si L Y, et al. Computational Materials Science, 2014, 81, 2.
22 Hill R, Rice J R. Journal of the Mechanics and Physics of Solids, 1972, 20, 401.
23 Asaro R J, Needleman A. Acta Metallurgica, 1985, 33, 923.
24 Chen S D, Liu X H, Liu L Z. International Journal of Mechanical Sciences, 2015, 100, 226.
25 Chen S D, Lu R H, Sun J, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(2), 353 (in Chinese).
陈守东, 卢日环, 孙建, 等. 中国有色金属学报, 2021, 31(2), 353.
26 Chen S D, Lu R H, Chen Z P, et al. Materials Reports, 2021, 35(4), 4170 (in Chinese).
陈守东, 卢日环, 陈子潘, 等. 材料导报, 2021, 35(4), 4170.
[1] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[4] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[5] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[6] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[7] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[8] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[9] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[10] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[11] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[12] 陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
[13] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[14] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[15] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed