Effect of Strong Shear on Micro-rolling Deformation Behavior of Single Layer Grain Foil
CHEN Shoudong1,2,3,*, LU Rihuan4, LI Jie1,3, SUN Jian1,3
1 School of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 3 Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling 244061, Anhui, China 4 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, Yanshan University, Qinhuangdao 066004, Hebei, China
Abstract: The effect of strong shear on the micro-deformation behavior and crystal rotation evolution of rolling single layer crystal foil was deeply analyzed in order to determine the optimal foil rolling process. A crystal plastic finite element model based on dislocation slip mechanism was used for simulation, and the maximum differential speed ratio reached 1.5. A single layer crystal foil rolling model with random grain orientation was established to investigate the grain boundary interaction characteristics of oligocrystalline microstructure. The results show that the micro-deformation and crystal rotation are significantly localized by strong shear. The shear deformation of grain is promoted by strong shear and the coordinated deformation capacity of grain boundary is enhanced. The slip is more concentrated and anisotropic because of initiated slip can be extended and the main slip band shrinks and disperses to form a new secondary slip band by the shear deformation which is strengthened in the rol-ling zone. After foil rolling, the grain orientation mainly rotates and disperses around the width of the foil. The rotation angle increases and the dispersion point becomes more concentrated and stable by strong shear. The simulation results show that the anisotropy of single layer crystal foil rolling deformation is seriously affected by strong shearing, which leads to preferred orientation, slip localization and non-uniform stress-strain distribution.
通讯作者:
陈守东,铜陵学院机械工程学院副教授、博士。2010年铜陵学院材料成型及控制工程专业本科毕业,2013年昆明理工大学材料学专业硕士毕业,2016年东北大学材料加工工程专业博士毕业。目前主要从事晶体塑性有限元、极薄带轧制成形及层状金属复合材料的研究工作。发表论文40余篇,包括International Journal of Mechanical Sciences、Transactions of Nonferrous Metals Society of China、《金属学报》《材料导报》中英文版等。csdong0910@sina.com
引用本文:
陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
CHEN Shoudong, LU Rihuan, LI Jie, SUN Jian. Effect of Strong Shear on Micro-rolling Deformation Behavior of Single Layer Grain Foil. Materials Reports, 2024, 38(7): 22090135-8.
1 Duffner F, Kronemeyer N, Tübke J, et al. Nature Energy, 2021, 6, 123. 2 Masias A, Marcicki J, Paxton W A. ACS Energy Letters, 2021, 6(2), 621. 3 Zhang X H, Li Z, Luo L G, et al. Energy, 2022, 238, 121652. 4 Shim H C, Van Tran C, Hyun S, et al. Applied Surface Science, 2021, 564, 150416. 5 He Y Q, Yuan X, Zhang G W, et al. Science of the Total Environment, 2021, 766, 142382. 6 Chen J Q, Hu X L, Gao H T, et al. Journal of Materials Science & Technology, 2022, 99(4), 9. 7 Chen J Q, Wang X G, Gao H T, et al. Surface and Coatings Technology, 2021, 410, 126881. 8 Chen J Q, Zhao Y, Gao H T, et al. Surface and Coatings Technology, 2021, 421, 127369. 9 Prakash A, Weygand S M, Riedel H. Computational Materials Science, 2009, 45(3), 744. 10 Chan W L, Fu M W, Lu J, et al. Materials Science and Engineering A, 2010, 527(24-25), 6638. 11 Kanjarla A K, Van Houtte P, Delannay L. International Journal of Plasticity, 2010, 26, 1220. 12 Keller C, Hug E, Habraken A M, et al. International Journal of Plasticity, 2012, 29, 155. 13 Grogan J A, Leen S B, Mchugh P E. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 61. 14 Özdemir I. International Journal of Mechanical Sciences, 2014, 87, 52. 15 Yoshida K. International Journal of Mechanical Sciences, 2014, 83, 48. 16 Fallahi A, Ataee A. Materials Science and Engineering A, 2010, 527, 4576. 17 Guan Y J, Chen B, Zou J W, et al. International Journal of Plasticity, 2017, 88, 70. 18 Lv C, Deng G Y, Tieu A K, et al. Acta Materialia, 2011, 59, 3581. 19 Li L, Shen L M, Proust G, et al. Materials Science and Engineering A, 2013, 579, 41. 20 Zhang H M, Dong X H, Wang Q, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(11), 3362. 21 Deng G Y, Tieu A K, Si L Y, et al. Computational Materials Science, 2014, 81, 2. 22 Hill R, Rice J R. Journal of the Mechanics and Physics of Solids, 1972, 20, 401. 23 Asaro R J, Needleman A. Acta Metallurgica, 1985, 33, 923. 24 Chen S D, Liu X H, Liu L Z. International Journal of Mechanical Sciences, 2015, 100, 226. 25 Chen S D, Lu R H, Sun J, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(2), 353 (in Chinese). 陈守东, 卢日环, 孙建, 等. 中国有色金属学报, 2021, 31(2), 353. 26 Chen S D, Lu R H, Chen Z P, et al. Materials Reports, 2021, 35(4), 4170 (in Chinese). 陈守东, 卢日环, 陈子潘, 等. 材料导报, 2021, 35(4), 4170.