Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22100180-7    https://doi.org/10.11896/cldb.22100180
  金属与金属基复合材料 |
渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响
秦盛伟*, 邸黎寅, 王连翔, 张承昊
郑州大学机械与动力工程学院,郑州 450001
Effect of Carburizing on Fatigue Properties of Notched 18CrNiMo7-6 Alloy Steel
QIN Shengwei*, DI Liyin, WANG Lianxiang, ZHANG Chenghao
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 20398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析渗碳工艺对18CrNiMo7-6缺口构件疲劳性能的影响,对应力集中系数Kt=1.86的缺口试样进行渗碳热处理并测定其旋转弯曲疲劳性能,同时对试样表层组织、硬度以及应力场进行了表征。结果表明,渗碳热处理可以明显提升试样表面硬度并引入残余压应力,并且可以显著提升缺口试样的疲劳性能,相较于未渗碳试样疲劳极限提升超过100%;随着有效硬化层深度的增加,缺口试样的疲劳极限均呈现先增后减的趋势。未渗碳试样和渗碳试样的疲劳源均在缺口根部表面处,且均为多源断裂。疲劳过程中渗碳试样表面残余奥氏体在循环应力作用下诱导马氏体相变,其转变量存在一个临界值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦盛伟
邸黎寅
王连翔
张承昊
关键词:  18CrNiMo7-6合金钢  应力集中  渗碳热处理工艺  高周疲劳性能    
Abstract: In order to analyze the effect of carburizing process on the fatigue properties of the 18CrNiMo7-6 notched specimens, the notched specimens with stress concentration factor Kt=1.86 were carburized and then these rotating bending fatigue properties were measured. The microstructure, hardness and stress field of the specimens were characterized. The results show that carburizing heat treatment can significantly promote the surface hardness of the sample and introduce residual compressive stress. The fatigue limit of the notched samples is increased more than 100% compared with the uncarburized samples. With the increase of the depth of effective hardening layer, the fatigue limit of notched specimens increases first and then decreases. The fatigue sources of the uncarburized and carburized specimens are at the surface of notch root, and both of them are multi-source fracture. During fatigue, martensitic transformation of the retained austenite takes place on the surface of carburized specimen, and there is a critical value for its transformation.
Key words:  18CrNiMo7-6 alloy steel    stress concentration    carburizing heat treatment process    high cycle fatigue performance
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG156  
基金资助: 国家自然科学基金(52001281;U1804254);河南省科技攻关项目(192102210012)
通讯作者:  *秦盛伟,郑州大学机械与动力工程学院讲师、硕士研究生导师。2011年于东北大学材料冶金学院本科毕业,2017年于上海交通大学材料科学与工程专业博士毕业后到郑州大学工作至今。目前主要从事高强钢以及热处理等方面的研究工作。发表论文10余篇,包括Journal of Materials Research and Technology、Metallurgical and Materials Transactions A、Materials Science and Engineering A等。qinsw@zzu.edu.cn   
引用本文:    
秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
QIN Shengwei, DI Liyin, WANG Lianxiang, ZHANG Chenghao. Effect of Carburizing on Fatigue Properties of Notched 18CrNiMo7-6 Alloy Steel. Materials Reports, 2024, 38(2): 22100180-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100180  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22100180
1 Peng Y, Zhang S, Liu Z, et al. Materials Science and Technology, 2020, 36(10), 1076.
2 Słowik J, Łagoda T. International Journal of Fatigue, 2011, 33(9), 1304.
3 Cameron T B, Diesburg D E, Kim C. Journal of Metals, 1983, 35(7), 37.
4 Asi O, Can A C, Pineault J, et al. Materials & Design, 2009, 30(5), 1792.
5 Yoshida A, Fujita K, Kanehara T, et al. Bulletin of JSME, 1986, 29(247), 228.
6 Farfán S, Rubio-González C, Cervantes-Hernández T, et al. International Journal of Fatigue, 2004, 26(6), 673.
7 Genel K. Surface & Coatings Technology, 2005, 194(1), 91.
8 Yang F, Chen T, Lu Y. Journal of Materials Engineering and Perfor-mance, 2019, 28(6), 3423.
9 Agarwal N, Kahn H, Avishai A, et al. Acta Materialia, 2007, 55(16), 5572.
10 Akita M, Tokaji K. Surface & Coatings Technology, 2006, 200(20-21), 6073.
11 Ohkawa C, Ohkawa I. Engineering Fracture Mechanics, 2011, 78(8), 1577.
12 中华人民共和国国家质量监督检验检疫总局. GB/T 228.1-2010. 金属材料拉伸试验第1部分:室温试验方法, 中国标准出版社, 2010.
13 中华人民共和国国家质量监督检验检疫总局. GB/T 4337-2015. 金属材料疲劳试验旋转弯曲方法, 中国标准出版社, 2015.
14 欧盟X射线衍射残余应力测定标准. EN15305-2008.
15 中华人民共和国国家质量监督检验检疫总局. GB/T 9450-2005. 钢件渗碳淬火硬化层深度的测定和校核, 中国标准出版社, 2005.
16 Qin S W, Zhang B, Zhao H H, et al. Surface Tecknology, 2020, 49(12), 6 (in Chinese).
秦盛伟, 张棒, 赵辉辉, 等. 表面技术, 2020, 49(12), 6.
17 Liu L, Qiang L, Liu X, et al. Materials Letters, 2007, 61(4-5), 1251.
18 Tan Y X, Ren L P. Acta Metallurgica Sinica, 1989, 25(5), 6(in Chinese).
谈育煦, 任立平. 金属学报, 1989, 25(5), 6.
19 Qin S, Zhang C, Zhang B, et al. Journal of Materials Research and Technology, 2022, 16, 1136.
20 Asi O,Can A C, Pineault J, et al. Materials & Design, 2009, 30(5), 1792.
21 Genel K, Demirkol M. International Journal of Fatigue, 1999, 21 (2), 207.
22 Murakami Y, Endo M. International Journal of Fatigue, 1994, 16(3), 163.
23 Voskamp A P, Österlund R, Becker P C, et al. Metal Science Journal, 2013, 7(1), 14.
24 Kula P, Dybowski K, Lipa S, et al. Metal Science & Heat Treatment, 2014, 56(7), 440.
25 Gg A, Rong L A, Kw A, et al. Scripta Materialia, 2020, 184, 12.
26 Jeddi D, Lieurade H P. Procedia Engineering, 2010, 2(1), 1927.
27 Wei L, Huang Y, Sun Z, et al. International Journal of Fatigue, 2014, 64, 42.
28 Abdollahi A, Arias I. International Journal of Fracture, 2012, 174(1), 3.
29 Zhi Y H, Wagner D, Wang Q Y, et al. Materials Science and Enginee-ring A, 2013, 559, 790.
30 Xiao N, Hui W, Zhang Y, et al. Engineering Failure Analysis, 2019, 109, 104215.
31 Pacheco J L, Krauss G. Journal of Heat Treating, 1989, 7(2), 77.
32 Ma L, Wang M Q, Shi J, et al. Materials Science & Engineering A, 2008, 498(1-2), 258.
33 Matlock D K, Alogab K A, Richards M D, et al. Materials Research, 2005, 8(4), 453.
34 Qiu W, He Z, Fan Y N, et al. International Journal of Fatigue, 2016, 83, 335.
[1] 罗学昆, 赵春玲, 查小晖, 郭婧, 王欣, 汤智慧, 宇波. 喷丸对TB6钛合金疲劳应力集中敏感性的影响[J]. 材料导报, 2021, 35(12): 12114-12118.
[2] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 盛传德, 熊新红, 朱超, 戴彭丹, 章桥新. 添加气膜孔对镍基单晶合金DD6蠕变寿命的影响[J]. 材料导报, 2019, 33(22): 3768-3771.
[5] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed