Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 808-814    https://doi.org/10.11896/j.issn.1005-023X.2018.05.017
  材料综述 |
金属材料和结构的疲劳寿命预测概率模型及应用研究进展
张明义, 袁帅, 钟敏, 柏劲松
中国工程物理研究院,流体物理研究所,绵阳 621900
A Review on Development and Application of Probabilistic Fatigue Life Prediction Models for Metal Materials and Components
ZHANG Mingyi, YUAN Shuai, ZHONG Min, BAI Jinsong
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
下载:  全 文 ( PDF ) ( 1155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 疲劳过程的不确定性以及影响疲劳寿命的不确定性因素较多,导致疲劳寿命的分散性难以预测,在疲劳寿命预测模型中采用统计学和概率论的概念和方法是描述疲劳过程不确定性和疲劳寿命分散性的一种重要手段。本文针对疲劳寿命预测概率模型进行综述,总结和介绍了疲劳寿命经验公式和参数的随机化模型、表征疲劳寿命离散性的统计模型、基于材料微结构和疲劳物理机制的疲劳寿命预测概率模型以及研究广布疲劳损伤的概率模型,并对金属材料与结构的疲劳寿命预测方法进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明义
袁帅
钟敏
柏劲松
关键词:  疲劳寿命预测  疲劳寿命分散性  概率模型  疲劳物理机制    
Abstract: Because of the uncertainty of fatigue damage process and the uncertain influence factors for fatigue life,it is difficult to predict the fatigue life of metal materials and the variability of fatigue life. Combining the statistical theory and probabilistic me-thod in the fatigue life prediction model is the most important method to describe the uncertain and statistical nature of fatigue process and the variability of fatigue life. In this paper, the development and application of fatigue life prediction model for metal materials are reviewed. The random model based on empirical fatigue life theory, the statistical model for characterizing the variability, the probabilistic model for fatigue life prediction based on microstructure and physical mechanism of fatigue,and the probabilistic model for wide spread damage are introduced and summarized. This paper ends with discussion on the future research direction of fatigue life prediction method.
Key words:  fatigue life prediction    fatigue life variability    probabilistic model    fatigue damage mechanism
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金青年基金(51501171)
作者简介:  张明义:男,1982年生,博士,副研究员,主要从事材料损伤与断裂力学研究 E-mail:zmy1688@163.com
引用本文:    
张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
ZHANG Mingyi, YUAN Shuai, ZHONG Min, BAI Jinsong. A Review on Development and Application of Probabilistic Fatigue Life Prediction Models for Metal Materials and Components. Materials Reports, 2018, 32(5): 808-814.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.017  或          https://www.mater-rep.com/CN/Y2018/V32/I5/808
1 Pineau A, McDowell D L, Busso E P, et al. Failure of metals Ⅱ: Fatigue[J].Acta Materialia,2016,107:484.
2 Hong Y S , Zhao A G, Qian G A. Essential characteristic and in-fluential factors for very high cycle fatigue behavior of metallic ma-terials[J].Acta Metallurtica Sinica,2009,45(7):769(in Chinese).
洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009,45(7):769.
3 Tang L, Lu L. Effect of twin lamellar thickness on the fatigue pro-perties of nanotwinned Cu[J].Acta Metallurtica Sinica,2009,45(7):808(in Chinese).
唐恋,卢磊.孪晶片层厚度对纳米孪晶Cu疲劳性能的影响[J].金属学报,2009,45(7):808.
4 Han S W, Shi D Q, Yang X G, et al. Computational study on microstructure sensitive high cycle fatigue dispersivity[J].Acta Metallurtica Sinica,2016,52(3):289(in Chinese).
韩世伟,石多奇,杨晓光,等.微结构相关的高循环疲劳分散性计算方法研究[J].金属学报,2016,52(3):289.
5 Tryon R G, Cruse T A. Probabilistic mesomechanics for high cycle fatigue life prediction[J].Journal of Engineering Materials and Technology,2000,122:209.
6 Przybyla C, Prasannavenkatesan R, Salajegheh N, et al. Microstructure-sensitive modeling of high cycle fatigue[J].International Journal of Fatigue,2010,32:512.
7 Makkonen M. Predicting the total fatigue life in metals[J].International Journal of Fatigue,2009,31:1163.
8 Jiang Y Y, Ding F, Feng M L. An approach for fatigue life prediction[J].Journal of Engineering Materials & Technology,2005,129(2):182.
9 Karlén K, Olsson M. An investigation of the location of fatigue ini-tiation—deterministic and probabilistic aspects[J].International Journal of Fatigue,2014,66:65.
10 Machniewicz T. Fatigue crack growth prediction models for metallic materials Part Ⅰ:Overview of prediction concepts[J].Fatigue & Fracture of Engineering Materials & Structures,2012,36:293.
11 Mansor N I I, Abdullah S, Ariffin A K, et al. A review of the fatigue failure mechanism of metallic materials under a corroded environment[J].Engineering Failure Analysis,2014,42:353.
12 Christ H J. Is thermomechanical fatigue life predictable[J].Procedia Engineering,2013,55:181.
13 Christ H J, Fritzen C P, Kster P. Micromechanical modeling of short fatigue cracks[J].Current Opinion in Solid State and Materials Science,2014,18:205.
14 Chan K S. Roles of microstructure in fatigue crack initiation[J].International Journal of Fatigue,2010,32:1428.
15 Chan K S, Enright M P, Moody J P. Development of a probabilistic methodology for predicting hot corrosion fatigue crack growth life of gas turbine engine disks[J].Journal of Engineering for Gas Turbines and Power,2014,136:022505.
16 Ray A, Patankar R. A stochastic model of fatigue crack propagation under variable-amplitude loading[J].Engineering Fracture Mecha-nics,1999,62:477.
17 Yang J N, Manning S D. Stochastic crack growth analysis methodo-logies for metallic structures[J].Engineering Fracture Mechanics,1990,37:1105.
18 Lehmayr B, Staudacher S. A statistical model for scatter representation in stress life curves[J].Fatigue & Fracture of Engineering Materials & Structures,2012,35:347.
19 Wu W F, Ni C C. A study of stochastic fatigue crack growth mode-ling through experimental data[J].Probabilistic Engineering Mecha-nics,2003,18:107.
20 Lei Y. A stochastic approach to fatigue crack growth in elastic structural components under random loading[J].Acta Mechanica,1999,132:63.
21 Luo J, Bowen P. A probabilistic methodology for fatigue life prediction[J].Acta Materialia,2003,51:3537.
22 Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720[J].Acta Materialia,2003,51:3521.
23 Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J].International Journal of Fatigue,2009,31:476.
24 Wang G S. Intrinsic statistical characteristics of fatigue crack growth rate[J].Engineering Fracture Mechanics,1995,51:787.
25 Lehmayr B, Saudacher S. A statistical model for scatter representation in stress life curves[J].Fatigue & Fracture of Engineering Materials & Structures,2012,35:347.
26 Castillo E, Fernández A, Pinto H, et al. A general regression model for statistical analysis of strain-life fatigue data[J].Materials Letters,2008,62:3639.
27 Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356-T6 aluminum cast alloys. Part Ⅰ. Effect of casting defects[J].Journal of Light Metals,2001,1:73.
28 Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356/357 aluminum cast alloys. Part Ⅰ. Effect of microstructural constituents[J].Journal of Light Metals,2001,1:85.
29 Nyahumwa C, Green N R, Campbell J. Influence of casting technique and hot isostatic pressing on the fatigue of an Al-7Si-Mg alloy[J].Metallurgical and Materials Transactions A,2001,32:349.
30 Yi J Z, Gao Y X, Lee P D, et al. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys[J].Metallurgical and Materials Transactions A,2003,34:1879.
31 Yi J Z, Lee P D, Lindley T C, et al. Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components[J].Materials Science and Engineering A,2006,43:59.
32 Tryon R G, Cruse T A. A reliability-based model to predict scatter in fatigue crack nucleation life[J].Fatigue & Fracture of Engineering Materials & Structures,1998,21:257.
33 Liu S S, Dong L H, Wang H D, et al. Research and development of remaining fatigue life prediction of crankshaft[J].Material Review A:Review Papers,2015,29(10):116(in Chinese).
刘慎水,董丽虹,王海斗,等.曲轴剩余疲劳寿命评估方法研究进展[J].材料导报:综述篇,2015,29(10):116.
34 De P S, Mishra R S, Smith C B. Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy[J].Scripta Mate-rials,2009,60:500.
35 Ignatovich S R, Kucher A G, Yakushenko A S, et al. Modeling of coalescence of dispersed surface cracks. Part 1. Probabilistic model for crack coalescence[J].Strength of Materials,2004,36:125.
36 Bussac A, Lautridou J C. A probablilistic model for prediction of LCF surface crack initiation in PM alloys[J].Fatigue & Fracture of Engineering Materials & Structures,1993,21:257.
37 Chan K S. Changes in fatigue life mechanism due to soft grains and hard particles[J].Internatio-nal Journal of Fatigue.2010,32:526.
38 Chan K S, Enright M P. Probabilistic micromechanical modeling of fatigue-life variability in Ti alloy[J].Metallurgical and Materials Transactions A,2005,36:2621.
39 Zhu X, Yi J Z, Jones J W, et al. A probabilistic model of fatigue strength controlled by porosity population in a 319-Type cast aluminum alloy: Part Ⅰ. Model development[J].Metallurgical and Materials Transactions A,2007,38:1111.
40 Todinov M T. A probabilistic method for predicting fatigue life controlled by defects[J].Materials Science and Engineering A,1998,255:117.
41 Mura T. A theory of fatigue crack initiation[J].Materials Science and Engineering A,1994,176:61.
42 Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J].Journal of Appllied Mechanics,1981,48:97.
43 Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions[J].Metallurgical and Materials Transactions A,1982,13:117.
44 Venkataraman G, Chung Y W, Mura T. Application of minimum energy formation in a multiple slip band model for fatigue—Ⅰ. Calculation of slip band spacings[J].Acta Metallurgica et Materialia,1991,39:2621.
45 Venkataraman G, Chung Y W, Mura T. Application of minimum energy formation in a multiple slip band model for fatigue—Ⅱ. Crack nucleation and derication of a generalised coffin-manson law[J].Acta Metallurgica et Materialia,1991,39:2631.
46 Chan K S, Enright M P. A scaling law for fatigue crack initiation in steels[J].Scripta Metallurgica,1995,32:234.
47 Chang R, Morris W L, Buck O. Environmental effects on fatigue crack initiation[J].Scripta Metallurgica,1979,13:191.
48 Ihara C, Tanaka T. A stochastic damage accumulation model for crack initiation in high-cycle fatigue[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23:375.
49 Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals[J].Acta Metallurgica et Materialia,1994,42:3493.
50 Mura T, Nakasone Y. A theory of fatigue crack initiation in solids[J].Journal of Applied Mechanics,1990,57:1.
51 Chan K S. A microstructure-based fatigue-crack-initiation model[J].Metallurgical and Materials Transactions A,2003,34:43.
52 Chan K S, Enright M P. A probabilistic micromechanical code for predicting fatigue life variability: Model development and application[J].Journal of Engineering for Gas Turbines and Power,2006,128:889.
53 Chan K S, Tian J W, Yang B, et al. Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200[J].Metallurgical and Materials Transactions A,2009,40:2545.
54 Kapoor R, Sree Hari Rao V, Mishra R S, et al. Probabilistic fatigue life prediction model for alloys with defects: Applied to A206[J].Acta Materialia,2011,59:3447.
55 Schijve J. Fatigue of aircraft materials and structures[J].Internatio-nal Journal of Fatigue,1994,16(1):21.
56 Ostergaard D F, Hillberry B M. Characterization of the variability in fatigue crack propagation data. Probabilistic fracture mechanics and fatigue methods[S].USA:ASTM STP,1983.
57 Sergey S. Probabilistic method for the analysis of widespread fatigue damage in structures[J].International Journal of Fatigue,2005,27(3):223.
58 Rohrbaugh S M, Ruff D, Hillberry B M, et al. A probabilistic fatigue analysis of multiple site damage[C]∥FAA/NASA Internatio-nal Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance.Hamptom,1994:635.
59 Shi P, Mahadevan S. Corrosion fatigue and multiple site damage re-liability analysis[J].International Journal of Fatigue,2003,25:457.
60 Harlow D G, Wei R P. Probability modelling and statistical analysis of damage in the lower wing skins of two retired B-707 aircraft[J].Fatigue & Fracture of Engineering Materials & Structures,2001,24:523.
61 Zhang J P, Zhang J Y, Bao R, et al. Study of methods for evaluating the probability of multiple site damage occurrences[J].Science China Physics,Mechanics & Astronomy,2014,57:65.
62 Santgerma A, Beaufils J Y, Rosemberg B. An example of widespread fatigue damage assessment in A300 susceptible structure[C]∥The Fourth Joined DoD/FAA/NASA Conference on Aging Aircraft.US,Saint-Louis,2000.
63 Kebir H, Roelandt J M, Gaudin J. Monte Carlo simulations of life expectancy using the dual boundary element method[J].Engineering Fracture Mechanics,2001,68(12):1371.
64 Liao M, Shi G, Xiong Y. Analytical methodology for predicting fatigue life distribution of fuselage splices[J].International Journal of Fatigue,2001,23:177.
65 Romlay F R M, Ouyang H, Ariffin A K, et al. Modeling of fatigue crack propagation using dual boundary element method and Gaussian Monte Carlo method[J].Engineering Analysis with Boundary Elements,2010,34:297.
66 Yan X Z, Wang S N, Huang H C. Probability analysis method for aircraft structures containing multiple site damage[J].Journal of Mechanic Strength,2012,34(6):881(in Chinese).
闫晓中,王生楠,黄汉超.飞机结构发生多处损伤的概率分析方法[J].机械强度,2012,34(6):881.
[1] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[2] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[3] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[4] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed