Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 12-19    https://doi.org/10.11896/j.issn.1005-023X.2017.017.003
  材料综述 |
镥基闪烁晶体的研究进展*
肖学峰1,2,3,4, 徐家跃2, 向卫东1
1 同济大学材料科学与工程学院,上海 201804;
2 上海应用技术大学材料科学与工程学院,上海201418;
3 北方民族大学物理与光电信息功能材料重点实验室,银川750021;
4 北方民族大学电气信息工程学院,银川750021
Research Development of Lu-based Scintillation Crystals
XIAO Xuefeng1,2,3,4, XU Jiayue2, XIANG Weidong1
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804;
2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418;
3 Key Laboratory of Physics and Photoelectric Information Functional Materials Sciences and Technology, North Minzu University, Yinchuan 750021;
4 College of Electric and Information Engineering, North Minzu University,Yinchuan 750021
下载:  全 文 ( PDF ) ( 1296KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于高能物理实验、核医学成像、安全检查和地质探矿等领域的迫切需要,具有高密度、快衰减、高光输出和低成本等优良特性的闪烁晶体成为关注的焦点,特别是Ce3+激活的镥(Lu)基化合物,其开发、研究和应用方兴未艾。简要综述了硅酸镥、氧化镥和铝酸镥等闪烁晶体的生长技术、闪烁性能和应用,并展望了镥基闪烁晶体的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖学峰
徐家跃
向卫东
关键词:  镥基闪烁晶体  闪烁性能  晶体生长  透明陶瓷  闪烁玻璃    
Abstract: Scintillation crystals with high density, fast decay, high light yield and low cost have been the focus of attention due to the urgent needs in high energy physics experiments, nuclear medical imaging, security inspection and geological survey. Among them, Ce3+ doped Lu-based scintillation crystals have been extensively investigated and applied in various industrial fields. The recent progress on crystal growth, scintillation properties and applications of Lu-based scintillation crystals, including Lu2SiO4, Lu2O3, Lu3Al5O12, are reviewed. The further development of Lu-based scintillation crystals is presented.
Key words:  Lu-based scintillation crystals    scintillation properties    crystal growth    transparent ceramics    scintillation glass
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  O782  
  O799  
  TB34  
基金资助: 国家自然科学基金(51342007;51572175;61461001)
通讯作者:  徐家跃:通讯作者,男,教授,博士研究生导师,主要从事功能晶体材料的研究 E-mail:xujiayue@sit.edu.cn   
作者简介:  肖学峰:男,1977年生,博士研究生,讲师,主要从事功能晶体材料的研究 E-mail:xxf666666@163.com
引用本文:    
肖学峰, 徐家跃, 向卫东. 镥基闪烁晶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 12-19.
XIAO Xuefeng, XU Jiayue, XIANG Weidong. Research Development of Lu-based Scintillation Crystals. Materials Reports, 2017, 31(17): 12-19.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.003  或          https://www.mater-rep.com/CN/Y2017/V31/I17/12
1 姚连增. 晶体生长基础[M]. 合肥:中国科学技术大学出版社,1994:7.
2 Zhao Jintai, Wang Hong, Jin Tengteng,et al. Research development of inorganic scintillating crystals[J]. Mater China,2010,29(10):40(in Chinese).
赵景泰,王红,金滕滕,等.闪烁晶体材料的研究进展[J].中国材料进展,2010,29(10):40.
3 Qin Laishun, Ren Guohao. Progress and prospect in the development of LSO scintillation crystal[J]. J Synth Cryst,2003,32(4):286(in Chinese).
秦来顺,任国浩.硅酸镥闪烁晶体的研究进展与发展方向[J].人工晶体学报, 2003,32(4):286.
4 Moszynski M, Kapusta M, Nassalski A, et al. New prospects for time-of-flight PET with LSO scintillators[J]. IEEE Trans Nucl Sci,2006,53(5):2484.
5 Valais I, Michail C, David S, et al. A comparative study of the luminescence properties of LYSO∶Ce, LSO∶Ce, GSO∶Ce and BGO single crystal scintillators for use in medical X-ray imaging[J]. Phys Medica, 2008,24(2):122.
6 Gervino G, Monticone E. Characterization and performance of BGO crystals for positron emission tomography[J]. Sens Actuators A: Phys,1994,42(1-3):487.
7 Liu H F, Bao C, Watanabe M, et al.Investigation of LSO scintillations for high-resolution PET detectors[J]. Acta Photon Sin,2000,29(5):449.
8 Deng Jinkang, Xu Sida, Ning Chuangang, et al. Study on new scintillator properties and their applications[J]. Nucl Phys Rev,1999,16(1):61(in Chinese).
邓景康, 徐四大, 宁传刚,等.新型闪烁晶体的性能与应用研究[J]. 原子核物理评论,1999,16(1):61.
9 Melcher C, Schweitzer J. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator[J]. IEEE Trans Nucl Sci,1992,39(4):502.
10 Zhang Mingrong, Wei Jin. Status of research and development on scintillation crystals with properties of high density and fast decay time[J]. J Chin Ceram Soc,2004,32(3):384(in Chinese).
张明荣,韦瑾.高密度快衰减闪烁晶体及其研究现状[J]. 硅酸盐学报,2004,32(3):384.
11 Carney J P J, Townsend D W. Clinical count rate performance of an LSO PET/CT scanner utilizing a new front-end electronics architecture with sub-nanosecond intrinsic timing resolution[J]. Radiat Phys Chem,2006,75(12):2182.
12 Cecchi C, Bocci V, Germani S, et al. A LYSO calorimeter for a superB factory[J]. J Phys: Conf Ser,2011,293:012066.
13 Cordelli M, Happacher F, Martini M, et al. CCALT: A crystal calorimeter for the KLOE-2 experiment[J]. J Phys: Conf Ser,2011,293:012010.
14 Boellaard R, Buijs F, et al. Characterization of a single LSO crystal layer high resolution research tomograph[J].Phys Med Biol,2003,48(4):429.
15 Matsumura H, Watanabe S, Nakamura O, et al. Crystal growth of lutetium oxyorthosilicate (LSO) by melt-supply double crucible Czochralski (DC-CZ) method[J]. J Cryst Growth,2007,308(2):348.
16 Qin L S,Lu S, Ding D Z, et al. Color center and radiation center in Lu2SiO5∶Ce crystal[J]. J Rare Earths,2008,26(5):678.
17 Mao R H, Zhang L Y, Zhu R Y. LSO/LYSO crystals for future HEP experiments[J]. J Phys: Conf Ser,2011,293:012004.
18 Yan C F, Zhao G J, Zhang L H, et al. Crystal growth and optical characterization of large-sized cerium-doped Lu1.6Y0.4SiO5[J]. J Inorg Mater,2005,20(5):1301(in Chinese).
严成锋,赵广军, 张连翰,等.大尺寸Ce∶Lu1.6Y0.4SiO5闪烁晶体的生长和光谱特性[J]. 无机材料学报,2005,20(5):1301.
19 Chen J M, Zhang L Y, Zhu R Y. Large size LYSO crystals for future high energy physics experiments[J]. IEEE Trans Nucl Sci,2005,52(6):3133.
20 Alekhin M S, Render J, Kasperczyk M. STED properties of Ce3+ , Tb3+ , and Eu3+ doped inorganic scintillators[J]. Opt Express, 2017,25(2):1251.
21 Zhu R Y. Precision crystal calorimeters in high energy physics: Past, present and future[J]. Proc SPIE,2008,7079:70790W.
22 Ren G H, Wang S H. Demand of nuclear medical imaging techniques for inorganic[J]. Mater Rev,2002,16(7):31(in Chinese).
任国浩,王绍华.核医学成像技术对无机闪烁材料的需求[J].材料导报,2002,16(7):31.
23 Sanchez F, Moliner L, Correcher C, et al. Small animal PET scanner based on monolithic LYSO crystals: Performance evaluation[J]. Med Phys,2012,39(2):643.
24 Carney J P J, Townsend D W. Clinical count rate performance of an LSO PET/CT scanner utilizing a new front-end electronics architecture with sub-nanosecond intrinsic timing resolution[J]. Radiat Phys Chem,2006,75(12):2182.
25 Moses W W. Current trends in scintillator and detectors and mate-rials[J]. Nucl Instrum Methods Phys Res Sect A,2002,487(1-2):123.
26 Lempicki A, Randles M H, Wisniewski D, et al. LuAlO3∶Ce and other aluminate scintillators[J]. IEEE Trans Nucl Sci,1995,42(4):280.
27 Petrosyan A G, Ovanesyan K L, Pedrini C, et al. Bridgman growth and characterization of LuAlO3- Ce3 + scintillator crystals[J]. Cryst Res Technol,1998,33(2):241.
28 Ludziejewski T, Moszynski M, Kapusta M, et al. Investigation of some scintillation properties of YAG∶Ce crystals[J]. Nucl Instrum Methods Phys Res A,1997,389(2-3):287.
29 Pidol L, Kahn Harari A, Vianan B, et al. Scintillation properties of Lu2Si2O7∶Ce3+ a fast and efficient scintillator crystal[J]. J Phys: Condensed Matter,2003,15(12):2091.
30 Spijker J C, Dorenbos P, Eijk C W E, et al. Scintillation properties of LiLuSiO4∶Ce3+ [C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:326.
31 Lempicki A, Berman E, Wojtowicz A J, et al. Cerium-doped orthophosphates: New promising scintillators[J]. IEEE Trans Nucl Sci,1993,40(4):384.
32 Guillot N O, Loef E V D, Dorenbos P, et al. Luminescence and scintillation properties in Ce3+ activated trihalide compounds[C]// Proceedings of the Fifth International Conference on Inorganic Scintillators and Their Applications. Moscow,1999:282.
33 Pedrini C, Zhang L, Madej C, et al. Fluorescence and scintillation properties of cerium doped LaLuO3 single crystals[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:343.
34 Spijker J C, Dorenbos P, Allier C P, et al. Lu2S3∶Ce3+ : A new red luminescing scintillator[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:311.
35 Pidol L, Kahn-Harari A, Viana B, et al. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals[J]. IEEE Trans Nucl Sci,2004,51(3):1084.
36 Pidol L, Kahn-Harari A, Viana B, et al. Scintillation properties of Lu2Si2O7∶Ce3+, a fast and efficient scintillator crystal[J].J Phys: Condensed Matter,2003,15(12):2091.
37 Li H Y, Qin L S, Lu H, et al. Growth and macro-defects study of Lu2Si2O7∶Ce scintillation cystal[J]. J Inorg Mater,2006,21(3):527(in Chinese).
李焕英,秦来顺,陆晟,等. Lu2Si2O7∶Ce闪烁晶体的生长与宏观缺陷研究[J].无机材料学报,2006,21(3):527.
38 Feng X Q. Anti-site defects in YAG and LuAG crystals[J]. J Inorg Mater,2010,25(8):785(in Chinese).
冯锡淇. YAG和LuAG晶体中的反位缺陷[J]. 无机材料学报,2010,25(8):785.
39 Wang L X, Yin M, Guo C X, et al. Synthesis and luminescent pro-perties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method[J]. J Rare Earths,2010,28(1):16.
40 Wang Z F, Xu M, Zhang W P, et al. Synthesis and luminescent properties of nano-scale LuAG∶RE3+ (Ce, Eu) phosphors prepared by co-precipitation method[J]. J Lumin,2007,122(23):437.
41 Chewpraditkul W, Sreebunpeng K, Nikl M, et al. Comparison of Lu3Al5O12∶Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection[J]. Radiat Meas,2012,47(1):1.
42 Kei Kamada,Shunsuke Kurosawa, Yuui Yokota, et al. Fundamental study of inorganic-organic hybrid scintillator using Pr∶Lu3Al5O12 and plastic scintillator[J]. Jpn J Appl Phys,2014,53:04EH10-1.
43 Andrew George Stewart, Bjoern Seitz, Kevin O’Neill, et al. Energy resolution of Ce∶GAGG and Pr∶LuAG scintillators coupled to 3mm×3mm silicon photomultipliers[J]. IEEE Trans Nucl Sci,2016,63(5):2496.
44 Tomohisa Oya, Go Okada, Takayuki Yangida. Scintillation properties of Lu3Al5O12 co-doped with Nd and Ce[J]. J Ceram Soc Jpn,2016,124(5):536.
45 Petrosyan A G, Ovanesyan K L, Sargsyan R V, et al. Bridgman growth and site occupation in LuAG∶Ce scintillator crystals[J]. J Cryst Growth,2010,312(21):3136.
46 Zhuravleva M, Yang K, Spurrier-Koschan M, et al. Crystal growth and characterization of LuAG∶Ce∶Tb scintillator[J]. J Cryst Growth,2010,312(8):1244.
47 Sugiyama M, Fujimoto Y, Yanagida T, et al. Scintillation properties of Tm-doped Lu3Al5O12 single crystals[J]. Opt Mater,2011,34(2):439.
48 Kuntz J D, Roberts J J, Hough M, et al. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet[J]. Scr Mater,2007,57(10):960.
49 Seeley Z M, Kuntz J D, Cherepy N J, et al. Transparent Lu2O3∶Eu ceramics by sinter and HIP optimization[J]. Opt Mater,2011,33(11):1721.
50 Ogino H, Yoshikawa A, Nikl M, et al. Suppression of defect related host luminescence in LuAG single crystals[J]. Phys Procedia,2009,2(2):191.
51 Fasoli M, Vedda A, Nikl M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping[J]. Phys Rev B,2011,84(8):081102.
52 Lempicki A, Randles M H,Wisniewski D, et al. LuAlO3∶Ce and other aluminate scintillators[J]. IEEE Trans Nucl Sci,1995,42(4):2802284.
53 Petrosyan A G, Shirinyan G O, Ovanesyan K L, et al. Bridgman single crystal growth of Ce-doped (Lu1-xYx )AlO3[J]. J Cryst Growth,1999,198-199(1):492.
54 Fedorov A, Korzhik M, Lobko A, et al. Light yield temperature dependence of lutetium-based scintillation crystals[J]. Nucl Instrum Methods Phys Res Sect A,2005,537(1-2):276.
55 Balcerzyk M, Moszynski M, Galazka Z, et al. Perspectives for high resolution and high light output LuAP∶Ce crystals[J]. IEEE Trans Nucl Sci,2005,52(3):1823.
56 Zorenko Y, Gorbenko V, Voznyak T, et al. Intrinsic and Ce3+-related luminescence in single crystalline films and single crystals of LuAP and LuAP:Ce perovskites[J]. IEEE Trans Nucl Sci,2008,55(3):1192.
57 Ding D Z, Ren G H. Progress in the development of LuAlO3∶Ce scintillation crystals[J]. J Synth Cryst,2006,35(2):237(in Chinese).
丁栋周,任国浩. LuAlO3∶Ce闪烁晶体的研究进展[J].人工晶体学报,2006,35(2):237.
58 Chaval J, Clement D, Giba J, et al. Development of new mixed Lux -(RE3+)1-x AP:Ce scintillators (RE3+= Y3+or Gd3+ ):Comparison with other Ce-doped orintrinsic scintillating crystals[J]. Nucl Instrum Methods Phys Res Sect,2000,443(2-3):331.
59 Kuntner C, Aigingerb B, Auffraya E, et al. Scintillation properties and mechanism in Lu0.8Y0.2AlO3∶Ce[J]. Nucl Instrum Methods Phys Res Sect A,2002,486(1-2):176.
60 Mares J A, Nikl M, Soloviev A N, et al. Scintillation and spectroscopic properties of Ce3+-doped YAlO3 and Lux(RE)1-xAlO3- (RE=Y3+ and Gd3+) scintillators[J]. Nucl Instrum Methods Phys Res Sect A,2003,498(1-3):312.
61 Trummer J, Auffray E, Lecoq P, et al. Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods[J]. Nucl Instrum Methods Phys Res A,2005,551(2-3):339.
62 Cui S X, Zheng Y Q, Shi E W, et al. Czochralski growth of high temperature scintillation crystal Ce∶LSO[J]. J Synth Cryst,2002,31(6):521(in Chinese).
崔素贤,郑燕青,施尔畏,等. 高温闪烁晶体Ce∶LSO的生长研究[J]. 人工晶体学报,2002,31(6):521.
63 Antich P,Parkey R, Tsyganov E, et al. Comparison of LSO samples produced by czochralski and modified musatov methods[J]. Nucl Instrum Methods Phys Res A,2000,441(3):551.
64 Garmash V M, Beloglovski S Y, Lubetsi S L. Industrial manufactu-ring of cerium-doped lutetium silicate crystals on enterprise joint-stock-Company “North crystal”[J]. Nucl Instrum Methods Phys Res A,2002,486(1-2):106.
65 Iwanczyk J S,Tull C R,Macdonald L R, et al. New LSO based scintillators[J]. IEEE Trans Nucl Sci,2000,47(6):1781.
66 Eric B, Robson S R, Mackenzieand J D, et al. New lutetium silicate scintillators[J]. J Sol-Gel Sci Technol,2000,19(1):325.
67 Xu J Y, Lei X Y, Jiang X, et al. Industrial growth of yttira-stabilized cubic zirconia crystals by skull melting process[J]. J Rare Earths,2009,27(6):971.
68 Xu J Y, Zhan Z G, Zhang D B, et al. Skull melting process and its application[J]. J Synth Cryst,2009,38(1):101(in Chinese).
徐家跃,展宗贵,张道标,等.壳熔法生长技术及其应用[J].人工晶体学报,2009,38(1):101.
69 Zhang L, Madej C, Pedrini C, et al. Fast UV luminescence of Ce3+ and Pr3+ ions in lutetium orthoborate with the calcite or vaterite structure[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:303.
70 Wu Y T, Ding D Z, Pan S K, et al. Research on phase transition behavior of lutetium orthoborate LuBO3[J]. Phase Transitions,2011,84(4):315.
71 Wu Y T, Ren G H, Ding D Z, et al. Effects of scandium on the bandgap and location of Ce3+ levels in Lu1-xScxBO3∶Ce scintillators[J]. Appl Phys Lett,2012,100(2):021904.
72 Fukabori A, Chani V, Kamada K, et al. Growth of Tm3+-doped Y2O3, Sc2O3, and Lu2O3 crystals by the Micropulling down technique and their optical and scintillation characteristics[J]. Cryst Growth Des,2011,11(6):2404.
73 Boulon G, Guyot Y, Yoshikawa A. Optimization of the gain in Yb3+-doped cubic laser crystals of 99.99% purity[J].J Rare Earths,2009,27(4):616.
74 Guo R W,Guo C X. Luminescent properties of nano-and submicron-crystal Lu2O3∶Bi3+[J].J Chin Rare Earth Soc,2007,25(5):533.
75 Li J H, Liu X H, Wu J B, et al. High-power diode-pumped Nd∶Lu2O3 crystal continuous-wave thin-disk laser at 1359 nm[J]. Laser Phys Lett,2012,9(3):195.
76 Koopmann P, Peters R, Petermann K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Appl Phys B,2011,102(1):19.
77 Fukabori A, Chani V, Kamada K, et al. Growth of Y2O3, Sc2O3 and Lu2O3 crystals by the micro-pulling-down method and their optical and scintillation characteristics[J]. J Cryst Growth,2011,318(1):823.
78 Li L, Wang X C, Wei X T, et al. Influence of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu2O3:2%Yb, 0.2%Tm nanopowders[J]. Physica B: Condensed Matter, 2011,406(3):609.
79 Chen Q W, Shi Y, Chen J Y, et al. Photoluminescence of Lu2O3∶Eu3+ phosphors obtained by glycine-nitrate combustion synthesis[J]. J Mater Res,2005,20(6):1409.
80 Chen Q W, Shi Y, An L Q, et al. A novel co-precipitation synthesis of a new phosphor Lu2O3∶Eu3+[J]. J Eur Ceram Soc,2007,27(1):191.
81 Zhou D, Shi Y, Xie J J, et al. Fabrication and luminescent properties of Nd3+-doped Lu2O3 transparent ceramics by pressureless sintering[J]. J Am Ceram Soc,2009,92(10):2128.
82 Kirdsiri K, Kaewkhao J, Park J M, et al. Scintillation and luminescence properties of Sm 3+-activated Lu2O3-CaO-SiO2-B2O3 (LuCSB) scintillating glasses[J]. J Korean Phys Soc,2016,69(6):1094.
[1] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[2] 叶慧, 沈天成, 陈远志, 徐进. 太阳能电池用球形银颗粒的液相法制备研究[J]. 材料导报, 2024, 38(1): 22050236-5.
[3] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[4] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[5] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[6] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[7] 柴涛, 耿传刚, 房大然, 赵圣诗, 林小娉, 董允. 柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制[J]. 材料导报, 2023, 37(10): 21110055-6.
[8] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[9] 张丛, 曹剑武, 林广庆, 王成, 刘发付, 郭建斌, 郭在在, 乔光利, 庄杰, 黄维平. 烧结温度对AlON性能的影响[J]. 材料导报, 2019, 33(Z2): 158-160.
[10] 李雨萌, 田甜, 徐家跃. 外尔半金属TaAs单晶的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 120-125.
[11] 张乐, 周天元, 陈浩, 杨浩, 张其土, 宋波, 汪正平. Nd∶YAG激光透明陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 41-50.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed