Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 46-50    https://doi.org/10.11896/j.issn.1005-023X.2017.016.010
  材料研究 |
超声辅助微弧氧化Ti-13Nb-13Zr合金制备仿生涂层及其断裂力学性能*
王凤彪1, 张嘉易1, 丁茹1, 李银玉1, 李丽丽1, 陈松2
1 沈阳理工大学机械工程学院, 沈阳 110168;
2 辽宁科技大学机械工程及自动化学院, 鞍山 114051
Performance and Fracture Toughening of Biological Coating Prepared by Ultrasonication-assisted Micro-arc Oxidation Technique on Ti-13Nb-13Zr Alloy Surface
WANG Fengbiao1, ZHANG Jiayi1, DING Ru1, LI Yinyu1, LI Lili1, CHEN Song2
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110168;
2 School of Mechanical Engineering & Automation, Liaoning University of Science and Technology, Anshan 114051
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高微弧氧化钛合金制备的脆性仿生涂层的断裂力学性能,利用超声辅助微弧氧化复合工艺在Ti-13Nb-13Zr合金表面制备了钙磷生物涂层。通过压痕法测试分析了涂层断裂韧性,采用扫描电镜和X射线衍射仪测试了涂层表面形貌和相组成,并与微弧氧化制备的涂层性能进行了比较,分析了增韧原因。结果表明,引入超声后,微弧放电电压下降了40 V,涂层致密层明显增厚;相同电源占空比条件下,超声工艺所制备涂层的断裂韧性相比无超声工艺都有所提高。部分锐钛矿相TiO2转变为金红石相的相变增韧,超声空化效应引起的涂层致密化和增厚效果,以及微裂纹的均匀分布,是促使涂层断裂力学性能提高的主要原因。该复合工艺实现了微弧氧化钛合金生物涂层的增韧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凤彪
张嘉易
丁茹
李银玉
李丽丽
陈松
关键词:  超声辅助微弧氧化  生物涂层  断裂韧性  增韧机制    
Abstract: To improve the fracture mechanical property of the brittle biological coating prepared by micro-arc oxidation (MAO) on the Ti-13Nb-13Zr alloy surface, a combined technique of ultrasonication and micro-arc oxidation (US+MAO) was used to fabricate Ca-P biological coating. Indentation test was adopted to analyze coating fracture toughness, and scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to determine coating surface morphology and phase composition. Moreover, the coating performance was compared with that prepared by the original MAO process, and the toughening factors were analyzed. The results show that all the US+MAO coatings have higher fracture toughness compared with coatings prepared by the ori-ginal MAO process under the same duty cycle. Phase transformation toughening of partial rutile TiO2 to anatase, coating densification and thickening induced by ultrasonic cavitation effect, and the well distributed micro-cracking are the main causes that lead to enhanced fracture mechanical property. This combined technique achieves the toughening of MAO titanium alloy biological coating.
Key words:  ultrasonication-assisted micro-arc oxidation    biological coating    fracture toughness    toughening mechanism
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TH161  
基金资助: 2014年国家科技重大专项项目(2014ZX04015021);2016年高层次人才科研支持计划(4441102C001)
作者简介:  王凤彪:男,1979年生,博士,副教授,研究方向为钛合金表面仿生改性 E-mail:wfb_0_0@163.com
引用本文:    
王凤彪, 张嘉易, 丁茹, 李银玉, 李丽丽, 陈松. 超声辅助微弧氧化Ti-13Nb-13Zr合金制备仿生涂层及其断裂力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 46-50.
WANG Fengbiao, ZHANG Jiayi, DING Ru, LI Yinyu, LI Lili, CHEN Song. Performance and Fracture Toughening of Biological Coating Prepared by Ultrasonication-assisted Micro-arc Oxidation Technique on Ti-13Nb-13Zr Alloy Surface. Materials Reports, 2017, 31(16): 46-50.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.010  或          https://www.mater-rep.com/CN/Y2017/V31/I16/46
1 Mcpherson R,Gane N,Bastow T. Study of process affected by electrolyte concentration through microarc oxidation on the TC4 alloy surface[J].J Mater Sci:Mater Med,1995,6(6):327.
2 Ni Erxin,Yan Jikang,Tang Wanxia,et al.Review on the composite micro-arc oxidation on the titanium and titanium alloy surface[J].Mater Rev,2015,29(Z1):457(in Chinese).
倪尔鑫,严继康,唐婉霞,等.钛及钛合金复合微弧氧化的研究进展[J].材料导报,2015,29(专辑25):457.
3 Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J].Surf Coat Technol,1999,122(2-3):73.
4 Wang H R,Liu F, Zhang Y P, et al. Preparation and propertics of titanium oxide film on NiTi alloy by micro-arc oxidation [J].Appl Surf Sci,2011,25(13):5576
5 Wang Y J,Son R L.Microstructure and performance of porous ceramics film on surface of pure titanium[J]. Mater Rev:Rev,2013,27(8):98(in Chinese).
王彦佳,孙荣禄. 钛合金表面微弧氧化技术研究进展及影响因素[J]. 材料导报:综述篇,2009,30(2):129.
6 Tang H,Sun Q,Xin T Z.Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by mic-roarc oxidation[J].Appl Phys,2012,12(1):284.
7 Chen H T,Chung C J,Yang T H,et al.Osteoblast growth behavior on micro-arc oxidized β-titanium alloy[J].Surf Coat Technol,2010,205(5):162.
8 SonW W, Zhu X, Shin H I,et al. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants [J]. J Biomed Mater Res B,2003,66B(2):520.
9 Li L H, Kong Y M. Improved biological performance of Ti implants due to surface modification by microarc oxidation [J]. Biomaterials,2004,25(14):2867.
10 Ishizawa H,Ogino M.Formation and characterization of anodic titanium oxide films containing Ca and P[J]. J Biomed Mater Res,1995,29:65.
11 Yu Y,Li S P,Sook J L,et al.One-step approach for hydroxyapatite incorporated TiO2 coating on titanium via a combined technique of micro-arc oxidation and clectrophoretic deposition[J].Appl Surf Sci,2011,257(15):7010.
12 黄勇,汪长安.高性能多相复合陶瓷[M].北京:清华大学出版社,2008:134.
13 Liu J. Research of various composite processing biological coating fabricated by ultrasonic micro-arc oxidation on pure magnesium [D].Jiamusi:Jiamusi University,2014:39(in Chinese).
刘江.纯镁超声微弧氧化多种复合处理生物涂层的研究[D]. 佳木斯:佳木斯大学,2014:39.
14 Zhang A Q. Study on preparation and properties of magnesium and titanium based new biocoatings with ultrasonic auxiliary micro-arc oxidation[D].Jiamusi:Jiamusi University,2010:49(in Chinese).
张爱琴.超声辅助微弧氧化镁与钛基新型生物涂层的制备与性能研究[D].佳木斯:佳木斯大学,2010:49.
15 Li M H, Hu W Y, Sun X F. Study on elastic modulus and fracture toughness of an EB-PVD thermal barrier coatings[J].Rare Metal Mater Eng,2006,35(4):577(in Chinese).
李美姮,胡望宇,孙晓峰.EB-PVD热障涂层的弹性模量和断裂韧性研究[J]. 稀有金属材料与工程,2006,35(4):577.
16 Pecqueux F,Tancret F,Payraudeau N,et al.Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics:Modelling and experiment[J].J Eur Ceram Soc,2010,30(4):819.
17 Fu C Y. The effect of porous HA/BaTiO3 biological piezoelectric ceramic on the function of osteoblast cells in vitro[D].Changsha:Central South University,2013:26.(in Chinese).
付春颖. 多孔HA/BaTiO3复合材料对成骨细胞功能影响的体外研究[D].长沙:中南大学,2013:26.
[1] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[4] 王衍行, 李现梓, 韩韬, 肖雷, 何坤, 祖成奎. 高强高韧玻璃的研究进展[J]. 材料导报, 2022, 36(21): 20090229-7.
[5] 杜金平, 王衍飞, 刘荣军, 万帆. 铁弹畴转向增韧:应用于陶瓷涂层的一种潜在高温增韧机制[J]. 材料导报, 2022, 36(17): 21050180-10.
[6] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[7] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[8] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[9] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[10] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[11] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[12] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[13] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[14] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[15] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed