Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 161-170    https://doi.org/10.11896/j.issn.1005-023X.2017.06.031
  计算模拟 |
熔融聚合耐高温聚酰胺的非等温结晶动力学研究
王忠强1, 2, 胡国胜1, 张静婷1, 徐久升2, 邵正杰3
1 中北大学高分子与生物工程研究所, 太原 030051;
2 广东中塑新材料有限公司, 东莞 523860;

3 华南师范大学物理与电信工程学院, 广州 510006
Study on Non-isothermal Crystallization Kinetics of High-temperature
Resistant Polyamides Prepared by Melt Polymerization
WANG Zhongqiang1,2, HU Guosheng1, ZHANG Jingting1, XU Jiusheng2, SHAO Zhengjie3
1 Institute of Macromolecules and Bioengineering,North University of China,Taiyuan 030051;
2 Guangdong Sinoplast
Advanced Material Co. Ltd., Dongguan 523860;
3 School of Physics and Telecommunication
Engineering,South China Normal University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2752KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过差示扫描量热仪(DSC)研究了熔融聚合耐高温聚酰胺10T以及10T/11树脂在不同降温速率下的非等温结晶行为。通过Jeziorny法、Ozawa法以及Mo法分析了PA10T和PA10T/11的非等温结晶动力学,并采用Kissinger法、Takhor法以及Vyazovkin法计算了体系的结晶活化能。结果表明,在初期结晶阶段,PA10T和PA10T/11晶体的生长方式是一维针状生长和二维片状生长并存,同时存在异相成核现象;Jeziorny法、Mo法适合研究PA10T和PA10T/11树脂的非等温结晶过程,而Ozawa法不适合研究其非等温结晶过程;随着11-氨基十一酸含量增加,非等温结晶活化能的绝对值呈现先减小后增大再减小的变化趋势,说明结晶速率呈现先增加后减少再增加的变化趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王忠强
胡国胜
张静婷
徐久升
邵正杰
关键词:  熔融聚合  耐高温聚酰胺  氨基十一酸  结晶动力学  非等温结晶    
Abstract: Poly(decamethylene terephthalamide) (PA10T) and decamethylene terephthalamide-aminoundecanoic copolyamide (PA10T/11) were prepared by melt polymerization. The non-isothermal crystallization behaviors of PA10T and PA10T/11 at di-fferent cooling rates were studied by means of differential scanning calorimetry (DSC). Avrami and Ozawa equations, along with the Mo equation were applied to obtain the non-isothermal crystallization kinetics of PA10T and PA10T/11. Moreover, the activation energy of non-isothermal crystallization of PA10T and PA10T/11 was explored by Kissinger, Takhor and Vyazovkin equations, respectively. The results showed that the mode of the nucleation and crystal growth may be the mixture with one-dimensional, needle-like and two-dimensional, circular. Meanwhile, there was heterogeneous nucleation phenomenon during the non-isothermal crystallization process. Jeziorny and Mo equations well described the non-isothermal crystallization kinetics of PA10T and PA10T/11, while Ozawa equation failed. With the increasing contents of 11-aminoundecanoic acid, the absolute values of activation energy of non-isothermal crystallization first decreased, then increased and finally decreased, which revealed that crystallization rates first increased, then decreased and finally increased.
Key words:  melt polymerization    high-temperature resistant polyamides    aminoundecanoic acid    crystallization kinetics    non-isothermal crystallization
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TQ323.6  
基金资助: 国家科技支撑计划项目(2013BAE02B01);广东省产学研结合项目(2013B090500003);广东省特派员工作站项目(2014A090906002)
通讯作者:  胡国胜:男,1959年生,博士,教授,博士研究生导师,研究方向为高分子合成与共混改性,E-mail:huguosheng@nuc.edu.cn   
作者简介:  王忠强:男,1985年生,博士研究生,研究方向为高分子合成与共混改性,E-mail:jaw1985@sina.com
引用本文:    
王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
WANG Zhongqiang, HU Guosheng, ZHANG Jingting, XU Jiusheng, SHAO Zhengjie. Study on Non-isothermal Crystallization Kinetics of High-temperature
Resistant Polyamides Prepared by Melt Polymerization. Materials Reports, 2017, 31(6): 161-170.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.031  或          https://www.mater-rep.com/CN/Y2017/V31/I6/161
1 Wang W Z, Huang A M, Liu A X, et al. Synthesis and characte-rization of long chain semiaromatic polyamides based on undecanediamine[J]. J Wuhan University of Technology:Mater Sci Ed,2012,27(4):689.
2 Wang W Z, Zhang Y H. Environment-friendly synthesis of long chain semiaromatic polyamides[J]. Express Polym Lett,2009,3(8):470.
3 Zhang G, Zhou Y X, Kong Y, et al. Semiaromatic polyamides containing ether and different numbers of methylene (2-10) units: Synthesis and properties[J]. RSC Adv,2014,4(108):63006.
4 Wang L H, Calleja F J B, Kanamoto T, et al. The characterization and properties of nylon 13,13[J]. Polymer,1993,34(22):4688.
5 Hu G S, Ding Z Y, Li Y C, et al. Crystalline morphology and mel-ting behavior of nylon11/ethylene-vinyl alcohol/dicumyl peroxide blends[J]. J Polym Res,2009,16(3):263.
6 Cui X W, Yan D Y, Wang Y P. Isothermal and nonisothermal crystallization kinetics of novel even-odd nylon 1011[J]. J Appl Polym Sci,2005,97(4):1637.
7 Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44(8):2537.
8 Zhang X K, Xie T X, Yang G S. Isothermal crystallization and mel-ting behaviors of nylon 11/nylon 66 alloys by in situ polymerization[J]. Polymer,2006,47(6):2116.
9 Wang Y D, Fu P, Li X G, et al. The isothermal melt crystallization kinetics of nylon 612[J]. Polym Mater Sci Eng,2011,27(2):103(in Chinese).
王玉东, 付鹏, 李晓光, 等. 尼龙612的等温结晶动力学[J]. 高分子材料科学与工程,2011,27(2):103.
10 Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,12(3):150.
11 Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.[J]. Polymer,1978,19(10):1142.
12 Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization. Ⅱ:Extension of the kolmogoroff-avrami-evans theory onto processes with variable rates and mechanisms[J]. Colloid Polym Sci,1974,252(6):433.
13 Mandelkern L. Crystallization of polymers[M]. NewYork: Mc Graw-Hill Press,1964.
14 Patel R M, Bheda J H, Spruiell J E. Dynamics and structure deve-lopment during high-speed melt spinning of nylon 6. Ⅱ. Mathematical modeling[J]. J Appl Polym Sci,1991,42(6):1671.
15 Zhang Z Y. Theoretical analysis of kinetics of nonisothermal crystallization of polymers[J]. Chin J Polym Sci,1994(3):256.
16 Liu T X, Mo Z S, Wang S E, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polym Eng Sci,1997,37(3):568.
17 Sharples A. Introduction to polymer crystallization[M]. London: Edward Arnold,1996:122
18 Gao G H, Li W H, Yan D Y. Investigation on crystallization kine-tics of nylon 1218[J]. Acta Polym Sin,2004,1(4):465(in Chinese).
高光辉, 李卫华, 颜德岳. 尼龙1218的等温及非等温结晶动力学研究[J]. 高分子学报,2004,1(4):465.
19 López L C, Wilkes G L. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide)[J]. Polymer,1989,30(5):882.
20 Supaphol P. Nonisothermal bulk crystallization and subsequent mel-ting behavior of syndiotactic polypropylenes: Crystallization from the melt state[J]. J Appl Polym Sci,2000,78(2):338.
21 Zhang Z Y. Study on theory and method of crystallization kinetics of polymers[D]. Tianjin: Tianjin Polytechnic University,2006(in Chinese).
张志英. 聚合物结晶动力学理论和方法研究[D]. 天津: 天津工业大学,2006.
22 Sajkiewicz P, Carpaneto L, Wasiak A. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate)[J]. Polymer,2001,42(12):5365.
23 Seo Y S. Nonisothermal crystallization kinetics of polytetrafluoroethylene[J]. Polym Eng Sci,2000,40(6):1293.
24 Cazé C, Devaux E, Crespy A, et al. A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state[J]. Polymer,1997,38(3):497.
25 Mo Z S. A method for the non-isothermal crystallzation kinetics of polymers[J]. Acta Polym Sin,2008,1(7):656.
26 Liu Y, Yang G S. Non-isothermal crystallization kinetics of polya-mide-6/graphite oxide nanocomposites[J]. Thermochim Acta,2010,500(1):13.
27 Shi J S, Yang X J, Wang X, et al. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites[J]. Polym Test,2010,29(5):596.
28 Zhang Q X, Mo Z S. Melting crystallization behavior of nylon 66[J]. Chin J Polym Sci,2001,19(3):237.
29 Zhang Q X, Zhang Z H, Zhang H F, et al. Isothermal and nonisothermal crystallization kinetics of nylon-46[J]. J Polym Sci Part B,2002,40(16):1784.
30 Ma Y L, Hu G S, Ren X L, et al. Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker (T-ZnOw) composites[J]. Mater Sci Eng A,2007,s460-461(1):611.
31 Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44(8):2537.
32 Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J]. J Res National Bureau Standards,1956,57(4):217.
33 Takhor R. Advances in nucleation and crystallization of glasses[M]. Columbus: American Ceramics Society,1971:166.
34 Vyazovkin S, Sbirrazzuoli N. Isoconversional approach to evaluating the Hoffman-Lauritzen Parameters (U* and Kg) from the overall rates of nonisothermal crystallization[J]. Macromolecular Rapid Commun,2004,25(6):733.
35 Vyazovkin S, Dranca I. Isoconversional analysis of combined melt and glass crystallization data[J]. Macromolecular Chem Phys,2006,207(1):20.
36 Achilias D S, Papageorgiou G Z, Karayannidis G P. Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate)[J]. J Polym Sci Part B,2004,42(20):3775.
[1] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[2] 李绍龙, 徐艺, 陈农田, 杨文锋. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018, 32(16): 2882-2888.
[3] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[4] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed