Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 7-14    https://doi.org/10.11896/j.issn.1005-023X.2017.03.002
  材料综述 |
层状二硫化钼材料的制备和应用进展*
马浩, 杨瑞霞, 李春静
河北工业大学电子信息工程学院,天津 300400;
Advances in 2D Transition Metal Dichalcogenides
MA Hao, YANG Ruixia, LI Chunjing
School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300400;
下载:  全 文 ( PDF ) ( 1758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硫化钼(MoS2)是具有天然可调控带隙的二维层状材料,其独特的性质引起了科研人员的广泛关注,在微电子及光电领域具有重要的应用前景。介绍了MoS2的基本性质和常用制备方法,对层状MoS2材料在电子和光电子器件方面的应用进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马浩
杨瑞霞
李春静
关键词:  MoS2  二维层状材料  材料制备  光电子器件    
Abstract: Molybdenum disulfide (MoS2) is two-dimensional layered material with natural tunable band-gap. Very recently, MoS2 have received much attention owing to its unusual properties and hold great potential for optoelectronic and microelectronic application. In this paper, basic structure and properties of MoS2 are introduced firstly. Then the common fabrication methods of MoS2 are analyzed. The applications of MoS2 in electronic and optoelectronic devices and the prospects for future applications are summarized in the end.
Key words:  molybdenum disulfide    two-dimensional layered material    material synthesis    optoelectronic devices
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TQ125  
基金资助: *河北省自然科学基金(F2014202184);天津市自然科学基金重点项目(15JCZDJC37800)
作者简介:  马浩:男,1990年生,硕士,主要从事二维材料与器件研究 E-mail:mhhebut@outlook.com 杨瑞霞:通讯作者,男,1957年生,博士,教授,主要从事新型电子材料与器件研究 E-mail:yangrx@hebut.edu.cn
引用本文:    
马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
MA Hao, YANG Ruixia, LI Chunjing. Advances in 2D Transition Metal Dichalcogenides. Materials Reports, 2017, 31(3): 7-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.002  或          https://www.mater-rep.com/CN/Y2017/V31/I3/7
1 Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceed National Academy Sci United States Am,2005,102(30):10451.
2 Dabidian N, Dutta Gupta S, Kholmanov I, et al. Experimental de-monstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Lett,2016,16(6):3607.
3 Suh J, Bae D. Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state proce-ssing[J]. Compos Part B,2016,95:317.
4 Ambrosi A, Pumera M. Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications[J]. Chem A Eur J,2016,22(1):153.
5 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
6 Mattheiss L F.Band structures of transition-metal-dichalcogenide la-yer compounds[J]. Phys Rev B,1973,8(8):3719.
7 Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observedoptical, electrical and structural properties[J]. Adv Phys,1969,18(73):193.
8 Han M Y, Ozyilmaz B, Zhang Y, et al. Energy band-gap enginee-ring of graphene nanoribbons[J]. Phys Rev Lett,2007,98(20):206805.
9 Eren B, Gysin U, Marot L, et al. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy[J]. Appl Phys Lett,2016,108(4):041602.
10 Ding Z, Miao Z, Xie Z, et al. Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells[J]. J Mater Chem A,2016,4(7):2413.
11 Hill A, Mikhailov S A, Ziegler K. Dielectric function and plasmons in graphene[J]. Europhys Lett,2009,87(2):27005.
12 Wan Y J, Yang W H, Yu S H, et al. Covalent polymer functiona-lization of graphene for improved dielectric properties and thermal stability of epoxy composites[J]. Compos Sci Technol,2016,122:27.
13 Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Phys Rev Lett,2010,105(13):136800.
14 Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B,2011,83(24):245208.
15 Wang Qinghua, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol,2012,7(11):699 .
16 Zhao W, Ribeiro R M, Eda G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets[J]. Accounts Chem Res,2014,48(1):91.
17 Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J]. Appl Sci,2016,6(3):78.
18 Liu X, Zhang G, Pei Q X, et al. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons[J]. Appl Phys Lett,2013,103(13):133113.
19 Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. Am Chem Soc Nano,2011,5(10):7707.
20 Lee H S, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J].Nano Lett,2012,12(7):3695.
21 Frindt R F. Single crystals of MoS2 several molecular layers thick[J]. J Appl Phys,1966,37(4):1928.
22 Joensen P, Frindt R F, Morrison S R. Single-layer MoS2[J]. Mater Res Bull,1986,21(4):457.
23 Eda H, Yamaguchi D Voiry, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett,2011,11(12):5111.
24 Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed,2011,50(47):11093.
25 Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnol,2008,3(9):563.
26 Blake P, Brimicombe P D, Nair R R, et al. Graphene-based liquid crystal device[J]. Nano Lett,2008,8(6):1704.
27 Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nano-sheets produced by liquid exfoliation of layered materials[J]. Scien-ce,2011,331(6017):568.
28 Zhang S L, Choi H H, Yue H Y, et al. Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor[J]. Current Appl Phys,2014,14(3):264.
29 Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie Int Ed,2011,50(46):10839.
30 Zhan Y, Liu Z, Najmaei S, et al. Large-area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small,2012,8(7):966.
31 Heyne M H, Chiappe D, Meersschaut J, et al. Multilayer MoS2 growth by metal and metal oxide sulfurization[J]. J Mater Chem C,2016,4(6):1295 .
32 Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Lett,2012,12(3):1538.
33 Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater,2012,24(17):2320.
34 Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Lett,2013,13(6):2615.
35 Van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nat Mater,2013,12(6):554.
36 Yang X N, Li Q, Hu G F, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application[J]. Sci China Mater,2016,59(3):183(in Chinese).
杨小年,李强,胡国锋,等.高质量单层MoS2的可控合成及其在微纳电子方面的应用[J]. 中国科学,2016,59(3):183.
37 Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature,2015,520(7549):656.
38 Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering[J]. Phys Rev Lett,2007,98(13):136805.
39 Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol,2011,6(3):147.
40 Das S, Chen H Y, et al. High performance multilayer MoS2 transistors with scandium contacts [J]. Nano Lett,2013,13(1):100.
41 Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts[J]. Appl Phys Lett,2014,104(9):093106.
42 Lin J D, Han C, Wang F, et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with ce-sium carbonate[J]. Am Chem Soc Nano,2014,8(5):5323.
43 Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2[J]. Nano Lett,2014,14(11):6275.
44 Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2[J]. Am Chem Soc Nano,2011,5:9934.
45 Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2[J]. Appl Phys Lett,2012,101(4):043103.
46 Wu D, Zhang Z, Lv D, et al. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2[J]. Mater Express,2016,6(2):198.
47 Yu C H, Su P, Chuang C T. Performance benchmarking of monolayer and bilayer two-dimensional transition metal dichalcogenide (TMD) based logic circuits[C]//2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE,2016:1.
48 Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures[J]. Am Chem Soc Nano,2013,7:3246.
49 Li H, Yin Z, He Q, et al. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small,2012,8(1):63.
50 Cho B, Hahm M G,Choi M, et al. Charge-transfer-based gas sen-sing using atomic-layer MoS2[J]. Scientific Reports,2015,5:8052.
51 Long H, Harley-Trochimczyk A, Pham T, et al. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection[J]. Adv Funct Mater,2016,3:1002.
52 Shokri A A, Salami N. Gas sensor based on MoS2 monolayer[J]. Sensors Actuators B,2016,236:378.
53 Liu B, Chen L, Liu G, et al. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. Am Chem Soc Nano,2014,8(5):5304.
54 Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. Am Chem Soc Nano,2011,6(1):74.
55 Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnol,2013,8(7):497.
56 Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2[J]. Nano Lett,2013,13(4):1416.
57 Ye Y, Ye Z, Gharghi M, et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2[J]. Appl Phys Lett,2014,104(19):193508.
58 Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nat Mater,2015,14(3):301.
59 Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensio-nal monolayer materials[J]. Nano Lett,2013,13(8):3664.
60 Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells[J]. Nanoscale,2012,4(23):7399.
61 Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. Am Chem Soc Nano,2014,8(8):8317.
[1] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[2] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[3] 徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
[4] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[5] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[6] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[7] 程倩, 姚正军, 张帆, 牛永康. 二次镍层复镀对Ni-MoS2复合涂层结构和摩擦承载能力的影响[J]. 材料导报, 2020, 34(22): 22093-22099.
[8] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[9] 胡贵生, 章超, 钱晨阳, 文建新. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2): 233-238.
[10] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[11] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[12] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[13] 马浩, 杨瑞霞, 李春静, 韩应宽. 二硫化钼纳米片的制备及其光敏和气敏特性研究[J]. 材料导报, 2018, 32(6): 860-864.
[14] 霍玲玲, 乔丹, 王义智, 李钒, 黄一兵. Ti-O Magnéli相氧化物的性质、制备与应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 29-37.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed