Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24110159-9    https://doi.org/10.11896/cldb.24110159
  无机非金属及其复合材料 |
冷烧结技术在ZnO基压敏陶瓷中的应用及发展趋势
李蕾, 贾雨萱, 李国荣, 满振勇, 郑嘹赢*
中国科学院上海硅酸盐研究所无机功能材料与器件重点实验室,上海 201899
Application and Future Trend of Cold Sintering Process in ZnO-based Varistor Ceramics
LI Lei, JIA Yuxuan, LI Guorong, MAN Zhenyong, ZHENG Liaoying*
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
下载:  全 文 ( PDF ) ( 32345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZnO基压敏陶瓷因其优异的非线性电流-电压特性、快的响应速度及强瞬态能量吸收能力等优势而具有过电压保护功能,被广泛应用于电子领域。然而商用ZnO-Bi2O3系压敏陶瓷烧结温度高,存在第二相挥发偏离设计组成、晶粒尺寸均匀性差、能耗大等一系列问题,不满足高端应用和国家节能环保的战略需求。近年来提出的冷烧结技术(Cold sintering process,CSP)在中间液相、单轴压力和温度的协同作用下,不超过350 ℃即可实现陶瓷材料致密化。目前,已实现四元掺杂的ZnO基压敏陶瓷及ZnO-有机复合压敏陶瓷的冷烧结制备。本文综述了冷烧结工艺及其致密化机理、制备条件对致密化的影响,并对冷烧结在ZnO基压敏陶瓷中的应用进行了分类概述,最终展望了冷烧结技术在压敏器件中的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李蕾
贾雨萱
李国荣
满振勇
郑嘹赢
关键词:  冷烧结技术  ZnO基压敏陶瓷  溶解度  无机-有机复合    
Abstract: ZnO-based varistor ceramics are extensively employed in the field of electronics, owing to their excellent nonlinear current-voltage characteristics, fast response speed and robust transient energy absorption capabilities. However, the high sintering temperature of commercial ZnO-Bi2O3 varistor ceramics leads to a series of problems such as the volatilization of secondary phases deviating from the designed composition, poor grain size uniformity, and high energy consumption, thereby falling to meet the requirements for high-end applications and the national strategies for energy conservation and environmental protection. The cold sintering process (CSP) technology proposed in recent years can achieve the densification of ceramic materials at no more than 350 ℃ under the synergistic effect of the intermediate liquid phase, uniaxial pressure and temperature. Currently, the cold sintering preparations of quaternary doped ZnO-based varistor ceramics and ZnO-organic composite varistor cera-mics have been achieved. This paper reviews the cold sintering process and its densification mechanism, the influence of preparation conditions on densification, and classifies and summarizes the application of cold sintering in ZnO-based varistor ceramics. Finally, the development trend of cold sintering technology in varistor devices is prospected.
Key words:  cold sintering process    ZnO-based varistor ceramics    solubility    inorganic-organic composite
发布日期:  2025-10-27
ZTFLH:  TQ174  
基金资助: 中国科学院全球共性挑战专项(030GJHZ2022023GC)
通讯作者:  *郑嘹赢,博士,中国科学院上海硅酸盐研究所研究员、博士研究生导师。目前主要研究压电、压敏陶瓷的性能、制备技术和器件等。zhengly@mail.sic.ac.cn   
作者简介:  李蕾,中国科学院大学上海硅酸盐研究所硕士研究生,在郑嘹赢研究员的指导下开展冷烧结制备ZnO基压敏陶瓷及性能的研究。
引用本文:    
李蕾, 贾雨萱, 李国荣, 满振勇, 郑嘹赢. 冷烧结技术在ZnO基压敏陶瓷中的应用及发展趋势[J]. 材料导报, 2025, 39(20): 24110159-9.
LI Lei, JIA Yuxuan, LI Guorong, MAN Zhenyong, ZHENG Liaoying. Application and Future Trend of Cold Sintering Process in ZnO-based Varistor Ceramics. Materials Reports, 2025, 39(20): 24110159-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110159  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24110159
1 Clarke D R. Journal of the American Ceramic Society, 1999, 82(3), 485.
2 Zhao X T, Liao R J, Liang N C, et al. Journal of Applied Physics, 2014, 116(1), 014103.
3 Zhao M, Song H H, Cui W Z, et al. Ceramics International, 2021, 47(16), 23362.
4 Peng P, Deng Y J, Niu J P, et al. Journal of Advanced Ceramics, 2020, 9(6), 683.
5 Zhao X T, Liang J, Sun J J, et al. Journal of the European Ceramic Society, 2021, 41(1), 430.
6 He J J, Song L, Zhou B Z, et al. Transactions of China Electrotechnical Society, 2023, 38(20), 5605 (in Chinese).
何俊佳, 宋丽, 周本正, 等. 电工技术学报, 2023, 38(20), 5605.
7 Maria J P, Kang X, Floyd R D, et al. Journal of Materials Research, 2017, 32(17), 3205.
8 Galotta A, Sglavo V M. Journal of the European Ceramic Society, 2021, 41(16), 1.
9 Badev A, Marinel S, Heuguet R, et al. Acta Materialia, 2013, 61(20), 7849.
10 Egorov S V, Eremeev A G, Kholoptsev V V, et al. Journal of the European Ceramic Society, 2021, 41(13), 6508.
11 Lee W C, Liu K S, Lin I N. Journal of Materials Science, 2000, 35(19), 4841.
12 Radingoana P M, Guillemet-Fritsch S, Olubambi P A, et al. Ceramics International, 2019, 45(8), 10035.
13 Lin D B, Fan L C, Shi Y, et al. Optical Materials, 2017, 71, 151.
14 Liang J, Zhao X T, Sun J J, et al. Ceramics International, 2020, 46(10, Part A), 15076.
15 Schmerbauch C, Gonzalez-Julian J, Röder R, et al. Journal of the American Ceramic Society, 2014, 97(6), 1728.
16 Jiang M, Shi M Y, Li J M, et al. Microelectronics International, 2022, 39(4), 166.
17 Mazaheri M, Hassanzadeh-Tabrizi S A, Sadrnezhaad S K. Ceramics International, 2009, 35(3), 991.
18 Dahl P, Kaus I, Zhao Z, et al. Ceramics International, 2007, 33(8), 1603.
19 Danezan A, Delaizir G, Tessier-Doyen N, et al. Journal of the European Ceramic Society, 2018, 38(2), 769.
20 Sofia D, Barletta D, Poletto M. Additive Manufacturing, 2018, 23, 215.
21 Liu Y Y, Wang C Y, Zhang K D. International Journal of Applied Ceramic Technology, 2022, 19(4), 1904.
22 Guo J, Guo H Z, Baker A L, et al. Angewandte Chemie International Edition, 2016, 55(38), 11457.
23 Grasso S, Biesuz M, Zoli L, et al. Advances in Applied Ceramics, 2020, 119(3), 115.
24 Vakifahmetoglu C, Karacasulu L. Current Opinion in Solid State and Materials Science, 2020, 24(1), 100807.
25 Sohrabi Baba Heidary D, Lanagan M, Randall C A. Journal of the European Ceramic Society, 2018, 38(4), 1018.
26 Li Y C, Zhao X T, Kang S L, et al. Journal of Materials Science: Materials in Electronics, 2023, 34(31), 2105.
27 Ouyang R F, Shi W, Chen Y X, et al. Journal of the Chinese Ceramic Society, 2023, 51(8), 2108 (in Chinese).
欧阳瑞丰, 施玮, 陈云霞, 等. 硅酸盐学报, 2023, 51(8), 2108.
28 Marín-Cortés S, Biesuz M, Bhandari S, et al. Journal of the European Ceramic Society, 2024, 44(16), 116813.
29 Funahashi S, Guo J, Guo H Z, et al. Journal of the American Ceramic Society, 2017, 100(2), 546.
30 Kumar M, Ben Achour M A, Lasgorceix M, et al. Open Ceramics, 2024, 17, 100566.
31 Ndayishimiye A, Sengul M Y, Bang S H, et al. Journal of the European Ceramic Society, 2020, 40(4), 1312.
32 Ndayishimiye A, Grady Z A, Tsuji K, et al. Journal of the American Ceramic Society, 2020, 103(5), 3039.
33 Hong W B, Li L, Cao M, et al. Journal of the American Ceramic Society, 2018, 101(9), 4038.
34 Ndayishimiye A, Fan Z M, Funahashi S, et al. Inorganic Chemistry, 2021, 60(17), 13453.
35 Biesuz M, Taveri G, Duff A I, et al. Advances in Applied Ceramics, 2020, 119(2), 75.
36 Gonzalez-Julian J, Neuhaus K, Bernemann M, et al. Acta Materialia, 2018, 144, 116.
37 Guo N, Shen H Z, Shen P. Journal of the European Ceramic Society, 2023, 43(2), 452.
38 Guo H Z, Baker A, Guo J, et al. ACS Nano, 2016, 10(11), 10606.
39 Jabr A, Fanghanel J, Fan Z M, et al. Journal of the European Ceramic Society, 2023, 43(4), 1531.
40 Sengul M Y, Guo J, Randall C A, et al. Angewandte Chemie International Edition, 2019, 58(36), 12420.
41 Shi Y, Huang Z Y, Chen J J, et al. Ceramics International, 2022, 48(20), 30517.
42 Bang S H, Sengul M Y, Fan Z, et al. Materials Today Chemistry, 2022, 24, 100925.
43 Nur K, Mishra T P, Silva J G P D, et al. Journal of the European Ceramic Society, 2021, 41(4), 2648.
44 Serrano A, Caballero-Calero O, García M Á, et al. Journal of the European Ceramic Society, 2020, 40(15), 5535.
45 Jiang X P, Zhu G S, Xu H R, et al. Ceramics International, 2019, 45(14), 17382.
46 Kang X Y, Floyd R, Lowum S, et al. Journal of the American Ceramic Society, 2019, 102(8), 4459.
47 Bang S H, Tsuji K, Ndayishimiye A, et al. Journal of the American Ceramic Society, 2020, 103(4), 2322.
48 Hernández J A, Oliver J, Cante J C, et al. Powder Metallurgy, 2012, 55(1), 36.
49 Smirnov A V, Kornyushin M V, Kholodkova A A, et al. Inorganics, 2022, 10(11), 197.
50 Guo J, Legum B, Anasori B, et al. Advanced Materials, 2018, 30(32), e1801846.
51 Guo J, Si M, Zhao X, et al. Carbon, 2022, 190, 255.
52 Gao L, Yang X, Hu J, et al. Materials Letters, 2016, 171, 1.
53 Guo J, Berbano S S, Guo H Z, et al. Advanced Functional Materials, 2016, 26(39), 7115.
54 Zhao X T, Guo J, Wang K, et al. Advanced Engineering Materials, 2018, 20(7), 1700902.
55 Hérisson De Beauvoir T, Tsuji K, Zhao X T, et al. Acta Materialia, 2020, 186, 511.
56 Xiao Y J, Yang Y, Kang S L, et al. Molecules, 2024, 29(1), 129.
57 Si M M, Hao J Y, Zhao E D, et al. Acta Materialia, 2021, 215, 117036.
58 Si M M, Guo J, Hao J Y, et al. Composites Part B: Engineering, 2021, 226, 109349.
59 Mena-Garcia J, Dursun S, Tsuji K, et al. Journal of the European Ceramic Society, 2022, 42(6), 2789.
60 De Beauvoir T H, Dursun S, Gao L, et al. ACS Applied Electronic Materials, 2019, 1(7), 1198.
61 Dursun S, Tsuji K, Bang S H, et al. ACS Applied Electronic Materials, 2020, 2(7), 1917.
62 Guo J, Zhao X T, Herisson De Beauvoir T, et al. Advanced Functional Materials, 2018, 28(39), 1801724.
63 Liang J, Zhao X T, Kang S L, et al. Journal of the European Ceramic Society, 2022, 42(13), 5738.
64 Zhao X T, Xiao Y J, Kang S L, et al. Journal of Materials Science: Materials in Electronics, 2023, 34(26), 1798.
65 Sun J J. Study on fabrication and properties of high-breakdown-field ZnO varistor ceramics based on the “Cold Sintering”. Master’s Thesis, Chongqing University, China, 2020 (in Chinese).
孙健杰. 基于“冷烧结”技术的高击穿场强氧化锌压敏陶瓷制备与性能研究. 硕士学位论文, 重庆大学, 2020.
66 Liang J. Study on the preparation technology and properties of high performance ZnO varistor ceramics based on spark plasma-assisted cold sintering process. Master’s Thesis, Chongqing University, China, 2022 (in Chinese).
梁杰. 基于等离子体辅助冷烧结技术的高性能氧化锌压敏陶瓷制备工艺与性能研究. 硕士学位论文, 重庆大学, 2022.
67 Kermani M, Biesuz M, Dong J, et al. Journal of the European Ceramic Society, 2020, 40(15), 6266.
68 Guo H Z, Guo J, Baker A, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20909.
69 Zheng J C, Deng M, Shi Y, et al. Journal of the European Ceramic Society, 2024, 44(4), 2182.
70 Tian T, Li G R, Bernik S, et al. Materials Science in Semiconductor Processing, 2023, 163, 107570.
71 Tian T, Zheng L Y, Podlogar M, et al. ACS Applied Materials & Interfaces, 2021, 13(30), 35924.
72 Jabr A, Jones H N, Argüelles A P, et al. Journal of the European Ceramic Society, 2023, 43(12), 5319.
[1] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[2] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[3] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[4] 武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed