Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110130-7    https://doi.org/10.11896/cldb.24110130
  无机非金属及其复合材料 |
快速焦耳加热技术在固废材料处置和利用中的研究进展
付士峰1,2, 崔彦发1,2,*, 段国伟2
1 河北省建筑科学研究院有限公司,石家庄 050000
2 河北省固废建材化利用科学与技术重点实验室,石家庄 050000
Application of Rapid Joule Heating for Solid-Waste Treatment and Disposal
FU Shifeng1,2, CUI Yanfa1,2,*, DUAN Guowei2
1 Hebei Provincial institute of Building Science and Technology Co., Ltd., Shijiazhuang 050000, China
2 Hebei Province Science and Technology Key Laboratory of solid Wastefor Building Materials, Shijiazhuang 050000, China
下载:  全 文 ( PDF ) ( 4659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体废弃物大量堆存造成资源浪费和环境污染。传统处置方法(包括填埋、焚烧、堆肥、填充等)利用率低、适用范围小,甚至产生二次污染。快速焦耳加热技术因其高温、快热、快冷等特征,已成为一种新型的固废处置方法。本综述探讨了快速焦耳加热技术的关键问题,包括焦耳加热过程原理和设备,以及当前文献中采用此技术实现含碳固废的高值化利用、废旧电池的回收再造、金属元素的提取和分离等进展;最后讨论了该技术的优势以及工业化挑战,提供了对该领域未来研究的看法。以促进快速焦耳加热技术在固废处置中推广和应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付士峰
崔彦发
段国伟
关键词:  固体废弃物  快速焦耳加热技术  城市垃圾  固废处置和应用    
Abstract: A large amount of solid waste is piled up, which leads to huge waste of resources and environmental pollution. Traditional methods(including landfill, composting, incineration, filling, etc.) are inefficient, narrowly applicable and even have the risk of secondary pollution. Rapid Joule Heating Processes, with high heating temperature and fast heating/cooling speed, has become a new type of solid waste disposal method. This review discussed the key concepts that govern these rapid Joule heating processes including technical principles and equipment processes, as well as the current state-of-the-art for employing these processes to achieve high-value utilization of carbon-containing solid waste, recycling of waste batteries, extraction and separation of metal elements were discussed. Finally, the advantages and challenges of the industrial application were discussed. In addition, provided a perspective on future research avenues within this field, which should promote the promotion and application of rapid Joule heat technology in solid waste disposal.
Key words:  solid-waste    rapid joule heating    municipal waste    solid-waste treatment and disposal
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  X705  
基金资助: 石家庄市科技创新团队项目(248790156A)
通讯作者:  *崔彦发,工程师,2019年于清华大学获得硕士学位,现就职于河北省建筑科学研究院有限公司,主要从事固废处置和综合利用研究。cuiyanfa.2016@tsinghua.org.cn   
作者简介:  付士峰,正高级工程师,博士,长期从事低碳建材研发与推广应用工作,主要致力于工业固体废弃物综合利用、城镇垃圾资源化利用等方面的研究和应用工作。
引用本文:    
付士峰, 崔彦发, 段国伟. 快速焦耳加热技术在固废材料处置和利用中的研究进展[J]. 材料导报, 2025, 39(22): 24110130-7.
FU Shifeng, CUI Yanfa, DUAN Guowei. Application of Rapid Joule Heating for Solid-Waste Treatment and Disposal. Materials Reports, 2025, 39(22): 24110130-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110130  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110130
1 Li J H, Liu L L, Xu X F, et al. China Environmental Protection Industry, 2024(6), 21 (in Chinese)
李金惠, 刘丽丽, 许晓芳, 等. 中国环保产业, 2024(6), 21.
2 Cao Y Y, Wang S J, Wang Y, et al. China Building Materials, 2021(9), 118 (in Chinese)
曹元辉, 王胜杰, 王勇, 等. 中国建材, 2021(9), 118.
3 Zhang Y M, Shang X B, Li K M, et al. Ecology and Environmental Sciences, 2011, 20(2), 389 (in Chinese)
张英民, 尚晓博, 李开明, 等. 生态环境学报, 2011, 20(2), 389.
4 Yang D H, Liu X G, Dai X H. Strategic Study of CAE, 2024(6), 030 (in Chinese)
杨东海, 刘晓光, 戴晓虎. 中国工程科学, 2024(6), 030.
5 Han W, Zhang C Q, Wang H Y, et al. Environmental Protection Science, DOI:10. 16803/j. cnki. issn. 1004. 202403047 (in Chinese).
韩伟, 张传奇, 王海燕, 等. 环境保护科学, DOI:10. 16803/j. cnki. issn. 1004. 202403047.
6 Yao Y , Huang Z , Xie P , et al. Science, 2018, 359(6383), 1489.
7 Ding X R, He Z H, Li J S, et al. Nanoscale, 2024, 26, 16.
8 Dong Q , Lele A D , Zhao X , et al. Nature, 2023, 616, 488.
9 Dong Q , Yao Y , Cheng S , et al. Nature, 2022, 605, 470.
10 Zheng L , Ambrosetti M , Zaio F , et al. International Journal of Hydrogen Energy, 2023, 48(39), 14681.
11 Zhu X H, Li Y J, Gong M Q, et al. Angewandte Chemie, 2023, e202300074.
12 Wang C , Ping W , Bai Q , et al. Science, 2020, 368, 521.
13 Huang P, Zhu R, Zhang X, et al. Chemical Engineering Journal, 2022, 450, 137999.
14 Dancer C E J. Materials Research Express, 2016, 3(10), 102001.
15 Dong Y, Rao Y, Liu H, et al. eScience/Dianhuaxue, 2024, 4(4), 100253.
16 Zheng L, Ambrosetti M, Tronconi E. ACS Engineering Au, 2024, 4(1), 4.
17 Yap Y W, Mahmed N, Norizan M N, et al. Materials, 2023, 16(9), 3601.
18 Zeng K Z , Zhang J W , Gao W Q, et al. Advanced Functional Materials, 2022, 32(33), 1.
19 Zhang W , Wei X , Wu T, et al. Nano Energy, 2023, 118(Pt. B), 108994.
20 Sun J P, Qin S Y, Zhang Z S, et al. Applied Catalysis B: Environmental, 2023, 338(5), 123015.
21 Tao X W,Wu Z L,Tang H Y,et al. Transactions of Materials and Heat Treatment, 2025, 46(5), 65(in Chinese).
陶学伟, 吴则路, 唐护洋, 等. 材料热处理学报, 2025, 46(5), 65.
22 Liu L, Yang W, Wu Z K, Materials Reports, 2023, 37 (12), 190 (in Chinese)
刘灵, 杨伟, 吴宗锴, 等. 材料导报, 2023, 37(12), 190.
23 Wang J, Yang W, Ying G M, et al. Transactions of Materials and Heat Treatment, 2024, 45(5), 55 (in Chinese)
王杰, 杨伟, 应国民, 等. 材料热处理学报, 2024, 45(5), 55.
24 Griffin A, Robertson M, Gunter Z, et al. Industrial & Engineering Chemistry Research, 2024, 63(45), 19398
25 Deng B, Wang Z, Chen W Y, et al. Nature Communications, 2022, 13, 1.
26 Li C , Wang Z , Liu M , et al. Nature Communications, 2022, 13, 3338.
27 Yang W , Shang L , Liu X , et al. Chinese Chemical Letters, 2024, 35(11), 109501.
28 Li N, Liu J, Zeng W, et al. ACS Applied Materials & Interfaces, 2024. 16(43), 59015.
29 Luo F, Lyu T, Liu J, et al. Journal of Energy Chemistry, 2024, 92, 404.
30 Li G, Zhang W, Nie K, et al. Carbon, 2023, 215, 118444.
31 Xiaa D, Mannering J, Huang P, et al. Journal of the American Chemical Society, 2023, 146(1), 159.
32 Qian F, Peng L, Cao D, et al. Joule, 2024, 8(8), 2342.
33 Zhang Y, Wang Z, Wang L, et al. Small, 2024, 20(43), 2400892.
34 Luong D X, Bets K V, Algozeeb W A, et al. Nature, 2020, 577(7792), 647.
35 Ma Q , Gao Y , Sun B , et al. Nature Communi-Cations, 2024, 15(1), 8243.
36 Pei S , Teng J, Ren N, et al. Environmental Science and Technology, 2020, 54(7), 4573.
37 Eddy L , Xu S , Liu C , et al. Journal of the American Chemical Society, 2024, 146(23), 16010.
38 Barbhuiya N H , Kumar A , Singh A , et al. ACS Nano, 2021, 15(10), 15461.
39 Algozeeb W A , Savas P E , Luong D X , et al. ACS Nano, 2020, 14(11), 15595.
40 Saadi M, Advincula P A, Thakur M S H, et al. Science Advances, 2022, 8(46), eadd3555.
41 Wyss K M , Chen W , Beckham J L , et al. ACS Nano, 2022, 16(5), 7804.
42 Wyss K M , Silva K J , Ksenia V. et al. Advanced Materials, 2023, 35(48), 2306763.
43 Advincula P A , Luong D X , Chen W , et al. Carbon, 2021, 178, 649.
44 Wyss K M, DeKleine R, Couvreur R, et al. Communications Engineering, 2022, 1(1), 3.
45 Kevin M W, Jacob L, Weiyin C, et al. Carbon, 2021, 174, 430.
46 Jia C , Pang M , Lu Y . One Earth, 2022, 5(12), 1394.
47 Dericiler K , Kocanali A , Buldu-Akturk M , et al. Biomass Conversion and Biorefinery. 2024, 14(1), 1073.
48 Wyss K M, Luong D X, Tour J M. Advanced materials, 2022, 34(8), 2106970.
49 Wyss K M, Li J T, Advincula P A, et al. Advanced Materials, 2023, 35(16), 2209621.
50 Sarmah A, Sarikaya S, Thiem J, et al. ChemSusChem, 2022, 15(21), e202200989.
51 Gelfond J, Meng T, Li S, et al. Sustainable Materials and Technologies, 2023, 35, e0057.
52 Ma X S. Research on the repair of ternary cathode materialsfor spent Li-ion batteries. Master's Thesis, Central South University, China, 2023 (in Chinese)
马雪松. 废旧锂离子电池三元正极材料修复研究. 硕士学位论文, 中南大学, 2023.
53 Yin Y C, Li C, Hu X, et al. ACS Energy Letters, 2023, 8(7), 3005.
54 Guo Y, Yao Y, Guo C, et al. Energy & Environmental Science, 2024, 17(20), 7749.
55 Li C, Kou P, Wen H, et al. Journal of Alloys and Compounds, 2024, 990, 174446.
56 Dong Y , Zeng Z , Yuan Z , et al. Journal of Energy Chemistry, 2024, 91(4), 656.
57 Ji Y, Zhang H, Yang D, et al. Advanced Materials, 2024, 36(19), 2312548.
58 Chen W, Salvatierra R V, Li J T, et al. Advanced Materials, 2023, 35(8), 2207303.
59 Dong S, Song Y, Ye K, et al. EcoMat, 2022, 4(5), e12212.
60 Zheng X, Zhao X, Lu J, et al. Science China Materials, 2022, 65(9), 2393.
61 Li T, Tao L, Xu L, et al. Advanced Functional Materials, 2023, 33(43), 2302951.
62 Cheng Z , Luo Z , Zhang H , et al. Carbon Energy, 2024, 6(4), 91.
63 Qi Y W. Materials Reports, 2022, 36(S1), 436 (in Chinese).
齐亚兵. 材料导报, 2022, 36(S1), 436.
64 Zhou W J, Jiang X X. Nonferrous Metals(Extractive Metallurgy), 2023(4), 96 (in Chinese)
周文隽, 蒋训雄. 有色金属(冶炼部分), 2023(4), 96.
65 Deng B , Luong D X , Wang Z , et al. Nature Communications 2021, 12(1), 5794.
66 Deng B, Wang X, Luong D X, et al. Science Advances, 2022, 8(6), eabm3132.
67 Chen W , Cheng Y , Chen J , et al. Nature Communications, 2024, 15(1), 6250.
68 Chen W, Chen J, Bets K V, et al. Science Advances, 2023, 9(39), eadh5131.
69 Zhang F , Wang F , Wei X , et al . Journal of Energy Chemistry, 2022, 69, 369.
70 Deng B, Meng W, Advincula P A, et al. Communications Engineering, 2023, 2(1), 13.
71 Deng B , Carter R A , Cheng Y , et al. Nature Communications, 2023, 14(1), 6371.
72 Zheng T, Wang H, Zhou R, et al. ACS ES&T Engineering, 2024, 4(11), 2756.
73 Li X Q, Chen J, Sun C, et al. C. N. patent, CN202410660156, 2024 (in Chinese)
林晓青, 陈杰, 孙晨, 等. 中国专利, CN202410660156, 2024.
74 Li F, Zhu J, Sun P, et al. Nature Communications, 2022, 13(1), 4472.
75 Cheng Y Z, Bao X, Jiang D, et al. Angewandte Chemie International Edition, 2024, e202414943.
76 Fu K, Liu X, Zhang X, et al. Nature Communications, 2024, 15(1), 6137.
77 Chen Y, Shang H, Ren Y, et al. ACS ES&T Engineering, 2022, 2(6), 1039.
78 Chen Y, Qiao Q, Cao J, et al. Joule, 2021, 5(12), 3097.
79 Zhao A R, Ren Q Q, Tong H L. China Environmental Science, 2023, 43(2), 686 (in Chinese)
赵昂然, 任强强, 佟会玲. 中国环境科学, 2023, 43(2), 686.
80 Dellisanti F , Rossi P L , Giovanni V. International Journal of Mineral Processing, 2007, 83(3), 89.
81 Dellisanti F , Rossi P L , Giovanni V. International Journal of Mineral Processing, 2009, 91(3), 61.
82 Dellisanti F , Rossi P L , Giovanni V. International Journal of Mineral Processing, 2009, 93(3), 239.
83 Naoya K , Motoshi M , Hiroshi T . Journal-Atomic Energy Society of Japan, 1992, 34(9), 838.
84 Prette A L G , Cologna M , Sglavo V , et al. Journal of Power Sources, 2011, 196(4), 2061.
85 Etinkaya Z , Gkhan A , Dursun S , et al. International Journal of Applied Ceramic Technology, 2024, 21(3), 1567.
86 Cheng Y , Deng B , Scotland P , et al. Nature Communications, 2024, 15(1), 6117.
87 Selvam E , Yu K , Ngu J , et al. Nature Communications, 2024, 15(1), 5662.
88 Lu J, Liu S, Liu J, et al. Advanced Energy Materials, 2021, 11(40), 2102103.
89 Cheng Y, Chen J, Deng B, et al. Nature Sustainability, 2024, 7(4), 452.
90 Huang W, Xue K, Zhang Z L, et al. Bulletin of the Chinese Ceramic Society, 2024, 43(10), 3655 (in Chinese)
黄伟, 薛葵, 张子龙, 等. 硅酸盐通报, 2024, 43(10), 3655.
91 Zhang G T, Zhang Y J, Li Q Z, et al. Materials Reports, DOI:10. 11896/cldb. 24080002 (in Chinese)
张广田, 张艳佳, 李志全, 等. 材料导报, DOI:10. 11896/cldb. 24080002.
92 Zhang G T, Zhang Y J, He G W, et al. Building Structure, https:∥link. cnki. net/urlid/11. 2833. TU. 20240914. 1400. 006 (in Chinese)
张广田, 张艳佳, 贺光炜. 建筑结构, https:∥link. cnki. net/urlid/11. 2833. TU. 20240914. 1400. 006.
93 Zheng L , Ambrosetti M , Beretta A , et al. Chemical Engineering Journal, 2023, 466, 143154.
94 Wu D N, Sheng J, Lu H G, et al. ChemRxiv, DOI:10. 26434/chemrxivc0lk.
95 Eddy L, Shin J, Cheng Y, et al. ACS Nano, DOI:10. 1021/acsnano. 4c11628.
96 Dong Q, Hu S, Hu L, et al. Nature Chemical Engineering, 2024, 1, 680
97 Xie Q , Yu Y J , Zhang H J , et al. Structural engineering of high-entropy alloys for advanced electrocatalytic reactions. Tungsten, 2024. DOI:10. 1007/s428646-w.
98 Liu Y, Li P, Wang F, et al. Carbon, 2019, 155, 462.
99 Yang F, Deng P C, He H, et. al. Chemical Engineering Journal, 2024, 494, 152828.
100 Wu Y, Li Q, Li Y, et al. Carbon, 2024, 229, 119474.
[1] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[2] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
[5] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[6] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed