Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090001-13    https://doi.org/10.11896/cldb.24090001
  金属与金属基复合材料 |
高温防护铱合金改性的研究进展
刘忠宇1,2, 丁晨曦1, 方镇1, 吕镖1,3, 胡振峰1, 王浩旭1,*, 柳泉2,*
1 中国人民解放军军事科学院国防科技创新研究院,北京 100071
2 沈阳理工大学材料科学与工程学院,沈阳 110159
3 中国人民解放军63723部队,山西 忻州 036300
Research Progress on Modification of Iridium Alloys for High Temperature Protection
LIU Zhongyu1,2, DING Chenxi1, FANG Zhen1, LYU Biao1,3, HU Zhenfeng1, WANG Haoxu1,*, LIU Quan2,*
1 Defense Innovation Institute, Academy of Military Science PLA China, Beijing 100071, China
2 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
3 People’s Liberation Army Unit 63723, Xinzhou 036300, Shanxi, China
下载:  全 文 ( PDF ) ( 33401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属铱不仅熔点高、氧渗透率极低、抗热震性能良好而且高温抗氧化性能优异,在空天装备中常被视作热端部件抵抗极端服役条件(1 800~2 200 ℃)的理想热防护涂层材料之一。然而,铱存在催化活性高、发射率低以及氧化物易挥发等问题,这会影响服役寿命,需进行合金化改性以提高整体性能。本文综述了七种二元铱合金(Ir-X,X为Al、Hf、Zr、Rh、Ta、Re或Nb)、三元铱铝基合金(Ir-Al-X,X为 Ta、Hf或Zr等)以及三元铱铌基合金(Ir-Nb-Y,Y为 Hf、Ta或Ti等)在高温抗氧化方面的研究现状。梳理并构建了上述各类铱合金的成分组织及制备工艺与高温抗氧化性能或服役寿命之间的关联;着重总结了改性后铱合金的高温抗氧化作用效果和机制,同时兼顾高温力学性能或基体、涂层及氧化物间各层界面结合强度;对比分析明确了Hf、Al、Zr以及Rh等几种极具潜力的合金化元素,为极端高温服役环境下的铱合金设计开发与工程应用提供参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘忠宇
丁晨曦
方镇
吕镖
胡振峰
王浩旭
柳泉
关键词:  高温抗氧化性  铱合金  合金化改性  热防护    
Abstract: Iridium metal, with many advantages such as a high melting point, exceptionally low oxygen permeability, robust thermal shock resistance, and superior high-temperature oxidation resistance, is esteemed as one of the ideal materials for thermal protective coatings on hot end components of aerospace equipment which services in extreme high-temperature environments ranging from 1 800 to 2 200 ℃. However, due to the high catalytic activity, low emissivity, and volatility of iridium, the service life of iridium is significantly shortened, necessitating modifications such as alloying to enhance its durability and performance. To this end, this paper reviewed the recent progress of Ir-Al, Ir-Hf, Ir-Zr, Ir-Rh, Ir-Ta, Ir-Re, and Ir-Nb iridium alloys, Ir-Al-X (X=Ta, Hf, and Zr) ternary iridium-aluminum-based alloys, and Ir-Nb-Y (Y=Hf, Ta, and Ti) ternary iridium-niobium-based alloys for their high-temperature oxidation resistance. Moreover this study built the correlation between the composition and organization of the above iridium alloys and their high-temperature oxidation resistance or service life. It emphatically introduced the high temperature antioxidant effect and mechanism of iridium alloys doped with a single element or multiple elements, and discussed the high-temperature mechanical properties or interfacial bonding strength. Then the comparative analysis has clarified the potential alloying elements such as Hf, Al, Zr, and Rh, which can be used for the design and development of iridium alloys under extreme high temperature service environments. These may provide a reference and point to a direction for the design and development of iridium alloys for extreme high temperature service environments and engineering applications.
Key words:  high-temperature oxidation resistance    iridium alloy    alloying modification    thermal protection
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TB34  
通讯作者:  *王浩旭,博士,军事科学院国防科技创新研究院副研究员、硕士研究生导师。目前主要从事复合材料增材制造、高温合金制备、微系统与微纳器件等方面的研究。whx152@163.com
柳泉,博士,沈阳理工大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事军用复合材料及涂层的制备和耐蚀性等方面的研究。qliu@sylu.edu.cn   
作者简介:  刘忠宇,沈阳理工大学材料科学与工程学院硕士研究生,在王浩旭、柳泉老师的指导下进行研究。目前主要研究领域为熔盐电沉积制备贵金属涂层。
引用本文:    
刘忠宇, 丁晨曦, 方镇, 吕镖, 胡振峰, 王浩旭, 柳泉. 高温防护铱合金改性的研究进展[J]. 材料导报, 2025, 39(21): 24090001-13.
LIU Zhongyu, DING Chenxi, FANG Zhen, LYU Biao, HU Zhenfeng, WANG Haoxu, LIU Quan. Research Progress on Modification of Iridium Alloys for High Temperature Protection. Materials Reports, 2025, 39(21): 24090001-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090001  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090001
1 Zhang K, Bai S, Zhu L, et al. Surface and Coatings Technology, 2019, 358, 371.
2 Xin W, Ping Z, Hu Z, et al. Materials Protection, 2022, 55 (3), 107.
3 Weiland R, Lupton D F, Fischer B, et al. Platinum Metals Review, 2006, 50(4), 158.
4 Li F, Zhu L, Zhang K, et al. Surface and Coatings Technology. 2023, 466, 129640.
5 Kuppusami P, Murakami H, Ohmura T. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, 22, 1208.
6 Tuffias, Robert H. Materials and Manufacturing Processes, 1998, 13 (5), 773.
7 Bell W E, Tagami M, Inyard R E. The Journal of Physical Chemistry, 1966, 70, 2048.
8 Wang W Y, Zhang Y, Ren K, et al. Research Square-Research Square, 2023.
9 Huang Y, Bai S, Zhang H, et al. Applied Surface Science, 2015, 328, 436.
10 Zhang K L. Design and preparation of Ir-X coating and study of its thermal protection mechanism. Ph. D. Thesis, National University of Defense Technology, China, 2020(in Chinese).
张楷力. Ir-X涂层的设计、制备及其热防护机制研究. 博士学位论文, 国防科技大学, 2020
11 Yang Y, Li K, Liu G, et al. Journal of Materials Science & Technology, 2017, 33, 1195.
12 Reed, Brian D. In:1993 JANNAF Propulsion Meeting. California, 1993, pp. 269.
13 Paul A, Binner J, Vaidhyanathan B. Ultra‐High Temperature Ceramics, DOI:10.1002/9781118700853.CH7.
14 Wu W, Chen Z, Cong X, et al. Rare Metal Materials and Engineering, 2013, 42, 435.
15 Wimber R T, Hills S W, Wahl N K, et al. Metallurgical Transactions A, 1977, 8, 193.
16 Arıkan N, Charifi Z, Baaziz H, et al. Journal of Physics and Chemistry of Solids, 2015, 77, 126.
17 Bao Z, Murakami H, Yamabe-Mitarai Y. Corrosion Science, 2011, 53, 1224.
18 Mumtaz K, Echigoya J, Enoki H, et al. Journal of Materials Science, 1995, 30, 465.
19 Wang J, Zhang Z, Xu Z, et al. Corrosion Engineering, Science and Technology, 2011, 46, 732.
20 Yang W, Zhang L, Hua Y, et al. International Journal of Refractory Metals and Hard Materials. 2009, 27(1), 33.
21 Li F, Zhu L, Zhang K, et al. Surface and Coatings Technology, 2023, 466, 129640.
22 Baklanova N I, Lozanov V V, Morozova N B, et al. Thin Solid Films, 2015, 578, 148.
23 Peters A B, Zhang D, Samuel C, et al. Nature Communications, 2024, 15(1), 3328.
24 Clift W M, Mc Carty K F, Boehme D R. Surface and Coatings Technology, 1990, 42, 29.
25 Murakami H, Kamiya K, et al. Materials Science Forum, 2009, 546, 1689.
26 Etenko A, McKechnie T, Shchetkovskiy A, et al. ECS Transactions, 2007, 3, 151.
27 Fleischer R L. Journal of Materials Science, 1987, 22, 2281.
28 Glass D. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Ohio, 2008, pp. 2682.
29 Cui E, Wang C, Zuo Y et al. Surface and Coatings Technology, 2021, 427, 127821.
30 Koichiro Kamiya, Hideyuki Murakami. Journal of the Japan Institute of Metals, 2005, 69(1), 73.
31 Hua Y, Zhang L, Cheng L, et al. Materials Science and Engineering, B, 2005, 121, 156.
32 Bao Z, Murakami H, Yamabe-Mitarai Y. Corrosion Science, 2014, 87, 306.
33 Zhu L, Ye Y, Bai S, et al. Oxidation of Metals, 2019, 91, 749.
34 Hosoda H. Nanomaterials:from research to applications, Elsevier Ltd, Oxford, UK, 2006, pp.419.
35 Ode M, Murakami H, Onodera H. Scripta Materialia, 2005, 52, 1057.
36 Hosoda H, Watanabe S, Hanada S. MRS Online Proceedings Library (OPL), 1998, 552, KK8.
37 Kamiya K, Murakami H. Journal of the Japan Institute of Metals, 2005, 69, 73.
38 Kriklya L, Korniyenko K, Petyukh V, et al. Journal of Phase Equilibria and Diffusion, 2023, 44, 394.
39 Lee K N, Worrell W L. Oxidation of Metals, 1989, 32, 357.
40 Bonzel H. Journal of Catalysis, 1978, 53, 96.
41 Yamabe-Mitarai Y, Murakami H. Intermetallics, 2014, 48, 86.
42 Zhang K, Zhu L, Bai S, et al. Journal of Alloys and Compounds, 2020, 818, 152829.
43 Ran H, Du Z. Journal of Alloys and Compounds, 2006, 413(1), 101.
44 Cong X, Chen Z, Wu W, et al. Acta Astronautica, 2012, 79, 88.
45 Cong X, Chen Z, Wu W, et al. Applied Surface Science, 2012, 258(12), 5135.
46 Okamoto H. Journal of Phase Equilibria, 1992, 13, 653.
47 Chen Z, Wu W, Cong X. Journal of Materials Science & Technology, 2014, 30(3), 268.
48 Yamabe-Mitarai Y, Nakazawa S, Harada H. Scripta Materialia, 2000, 43, 1059.
49 Wu J, Zhang B, Zhan Y. Computational Materials Science, 2017, 131, 146.
50 Hu C Y. Study of CVD Ir/Re composites. Ph. D. Thesis, Central South University, China, 2002
胡昌义. CVD Ir/Re复合材料研究. 博士学位论文, 中南大学, 2002.
51 Liu S, Chen Y, et al. Surface and Coatings Technology, 2013, 237, 105.
52 Li H, Chen D, et al. Aerospace Materials & Technology, 2013, 43, 64.
53 Harding J T, John M K, Marshall A A. US patent, 19880020490, 1988.
54 Yamabe-Mitarai Y, Gu Y, Huang C, et al. JOM, 2004, 56, 34.
55 Yamabe-Mitarai Y, Ro Y, Harada H, et al. Metallurgical and Materials Transactions A, 1998, 29, 537.
56 Yamabe-Mitari Y, Ro Y, Maruko T, et al. Intermetallics, 1999, 7, 49.
57 Yamabe-Mitarai Y, Nakazawa S, Harada H. JSME International Journal Series A Solid Mechanics and Material Engineering, 2002, 45(1), 2.
58 Wu W, Chen Z, Wang L. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 607.
59 Hosoda H, Miyazaki S, Hanada S. Intermetallics, 2000, 8, 1081.
60 Anderson D R, Lampert J K, Mishra A, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1990, 8, 2251.
61 Hill P J, Cornish L A, Witcomb M J. Journal of Alloys and Compounds, 1998, 280(1), 240.
62 Gelfond N V, Morozova N B, Igumenov I K, et al. Journal of Structural Chemistry, 2009, 50, 919.
63 Gelfond N V, Morozova N B, Igumenov I K, et al. Journal of Structural Chemistry, 2010, 51, 82.
64 Zhu L, Du G, Bai S, et al. Corrosion Science, 2017, 123, 328.
65 Ode M, Abe T, Murakami H, et al. Intermetallics, 2008, 16, 1171.
66 Venkatalaxmi A, Padmavathi B S, Amaranath T. Fluid Dynamics Research, 2004, 35(3), 229.
67 Li F, Zhu L, Zhang K, et al. Materials Today Communications, 2024, 39 109288.
68 Li F, Zhang K, et al Journal of Materials Research and Technology, 2024, 28, 4428.
69 Pan X. Preparation and properties of iridium-rhodium alloy. Master’s Thesis, Kunming Institute of Precious Metals, China, 2017(in Chinese).
潘新东. 铱铑合金的制备及性能研究. 硕士学位论文, 昆明贵金属研究所, 2017.
70 Sekido N, Hoshino A, Fukuzaki M, et al. Journal of Phase Equilibria and Diffusion, 2011, 32, 219.
71 Chen J, Wang G, et al. Heat Treatment of Metals, 2022, 47, 222.
72 Cai H, Yi J, Wei Y, et al. Precious Metals, 2016, 37(S1), 28.
73 Wei Y, Chen L, Cai H, et al. Precious Metals, 2018, 39, 16.
74 Mitsutoshi Ueda, Kenta Terai, Shunsuke Yokota, et al. Journal of the Japan Institute of Metals, 2023, 87, 10279.
75 Cotell C M, Yurek G J. Oxidation of Metals, 1986, 26, 363.
76 Murakami H, Suzuki A, et al. In:Superalloys 2004 (Tenth International Symposium). Pennsylvania, 2004.
77 Kuppusami P, Murakami H, Ohmura T. Surface Engineering, 2005, 21, 53.
78 Wang L, Chen Z, Zhang Y, et al. International Journal of Refractory Metals and Hard Materials, 2009, 27, 590.
79 Yamabe-Mitarai Y, Koizumi Y, Murakami H, et al. MRS Proceedings, 1996, 460, 701.
80 Zhuang Y, Chen J, Lv L. Materials Reports, 2014, 28, 138.
81 Wu F, Murakami H, Suzuki A. Surface and Coatings Technology, 2003, 168, 62.
82 Suzuki A, Wu F, Murakami H, et al. Science and Technology of Advanced Materials, 2004, 5, 555.
83 Ai Y. Preparation process and oxidation and ablation resistance of Ir-Al-X coatings. Ph. D. Thesis, National University of Defense Technology, China, 2018 (in Chinese).
艾园林. Ir-Al-X涂层的制备工艺及抗氧化烧蚀性能研究. 博士学位论文, 国防科技大学, 2018.
84 Go Fujii, Hideyuki Kobayashi, Hirohide Ikeda, et al. In: AIAA Propulsion and Energy Forum, Atlanta, 2017.
85 Fang Z, Hu Z, Lv B, et al. Applied Surface Science, 2024, 657 159802.
86 Zhou J, Wang Q, Hui X, et al Materials & Design, 2020, 191, 108597.
87 Wu F, Murakami H, Harada H. Materials Transactions, 2003, 44, 1675.
88 Lee K N, Worrell W L. Oxidation of Metals, 1994, 41, 37.
89 Huang M, Li K, Li H, et al. Materials Science and Technology, 2009, 25(3), 344.
90 Yamabe-Mitarai Y, Gu Y, Harada H. Physics Letters A, 2021, 127424, 405.
91 Omori T, Makino K, Shinagawa K, et al. Intermetallics, 2014, 55, 154.
92 Huang C, Yamabe-Mitarai Y, Harada H. Journal of Alloys and Compounds, 2007, 428, 220.
93 Miura S, Ohkubo K, et al. Journal of Alloys and Compounds, 2005, 395, 263.
94 Yu X, Yamabe-Mitarai Y, Ro Y, et al. Metallurgical and Materials Transactions A, 2000, 31, 173.
95 Yamabe-Mitarai Y, Murakami D H. Intermetallics, 2014, 48, 86.
96 Huang C, Yamabe-Mitarai Y. Metallurgical and Materials Transactions A, 2005, 36, 539.
97 Gu Y, Yamabe-Mitarai Y, Yokokawa T, et al. Materials Letters, 2003, 57, 1171.
98 Sha J B, Yamabe-Mitarai Y. Intermetallics, 2013, 41, 1.
99 Huang C, Yamabe-Mitarai Y, et al. Materials Science and Engineering: A, 2005, 412, 191.
100 Sha J B, Yamabe-Mitarai Y. Intermetallics, 2013, 32, 145.
101 Huang C, Yamabe-Mitarai Y, Harada H. Materials Letters, 2008, 62, 1287.
102 Gyurko A M, Sanchez J M. Materials Science and Engineering: A, 1993, 170, 169.
103 Yamabe-Mitarai Y, Aoki H. Journal of Alloys and Compounds, 2003, 359, 1143.
[1] 沈彬, 顾尚军, 王劼, 魏福龙, 谢祥, 黎志英, 张钧祥, 李长荣. V含量对S30403奥氏体不锈钢高温抗氧化性能的影响[J]. 材料导报, 2025, 39(17): 24040050-9.
[2] 陈晓平, 陶贤成, 鲍听, 赵宁宁, 楼玉民, 岳建岭. GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究[J]. 材料导报, 2025, 39(14): 24060116-7.
[3] 王玉瑞, 孙洪飞, 孙顺平, 王洪金, 赵凤玲, 张扬, 李小平. Nb、W合金化对电弧熔覆MoSi2涂层高温抗氧化性的影响[J]. 材料导报, 2025, 39(10): 24040229-7.
[4] 王泽铭, 戴志伟, 彭康, 苏磊, 王红洁, 杜玉森. 主动热防护技术及自发汗冷却材料的研究进展[J]. 材料导报, 2024, 38(21): 23060076-6.
[5] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[6] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[7] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[8] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[9] 张鹏飞, 赖小明, 洪长青, 杨雷, 张玉生, 梁龙, 董薇, 刘峰, 马彬, 刘佳, 陈维强, 张璇, 陶积柏. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159.
[10] 尹桂丽, 陈岁元, 梁京, 刘常升. 激光直接沉积Fe55/NiCr-Cr3C2复合涂层的组织与性能[J]. 材料导报, 2021, 35(10): 10127-10133.
[11] 郭慧, 刘圆圆, 宋寒, 黄红岩, 刘韬, 徐春晓, 张恩爽, 李文静. 纤维对酚醛气凝胶材料性能的影响[J]. 材料导报, 2020, 34(Z2): 513-515.
[12] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[13] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[14] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed