INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability |
LIANG Hongyu1,*, WANG Bin2, LU Guang3
|
1 School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China 2 Lanpec Technologies Limited, Shanghai 201518, China 3 School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China |
|
|
Abstract In this study, a wide-spectrum-driven g-C3N4/Cu2(OH)2CO3(VCN/Cu) heterojunction catalyst with nitrogen vacancies was synthesized and the photocatalytic organic dyestuff degradation ability was investigated. The morphologies, crystal phases, element energy states and other properties of as-prepared catalysts were characterized by TEM/SEM, XRD, UV-Vis, XPS, PL, et al. The results indicate that the VCN/Cu heterojunction catalyst shows strong light absorption in the region of 250—1 800 nm, the reaction rate constant of photocatalytic RhB degradation for VCN/Cu heterojunction arrives 0.052 min-1, which is 12.7 times and 5.8 times higher than that of neat Cu2(OH)2CO3 and g-C3N4, as well as perfect photocatalytic stability. Nitrogen vacancies might not only promote interfacial charge transfer but also act as active sites to trap and reduce O2 molecules. Moreover, the mechanism of photocatalytic RhB degradation by VCN/Cu catalyst was studied.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:Natural Science Foundation of Liaoning Provincial Science and Technology Department(2019-ZD-0063). |
|
|
1 Lin H. Chinese Journal of Catalysis, 1991, 144(1), 189. 2 Guo C, Yin S, Dong Q, et al. Nanoscale, 2012, 4(11), 3394. 3 Fujishima A, Honda K. Nature, 1972, 238(1), 238. 4 Chang X, Sun S, Dong L, et al. Materials Letters, 2012, 83(12), 133. 5 Singh J A, Overbury S H, Dudney N J, et al.ACS Catalysis, 2012, 2(6), 138. 6 Xy A, Wza B, Jha B, et al. Applied Catalysis A, General, 2020, 601(7), 601. 7 Liang H Y, Zou H, Hu S. New Journal of Chemistry, 2017, 41(17), 8920. 8 Nguyen H T T, Tran H T V, Nguyen P M, et al. Journal of Water and Environment Technology, 2023, 21(1), 1. 9 Cazelles R, Liu J, Antonietti M. Chemelectrochem, 2015, 2(3), 333. 10 Naqvi K R, Marsh J M, Godfrey S, et al. International Journal of Cosmetic Science, 2013, 35(1), 41. 11 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179. 12 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435. 13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76. 14 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587. 15 He Z K, Fu J W, Cheng B, et al. Applied. Catalysis B Environmental, 2017, 205(5), 104. 16 Chen C, Zhou Y, Wang N, et al. RSC Advances, 2015, 5(116), 95523 17 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697. 18 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931. 19 Zheng Y, Jiao Y, Chen J, et al. Journal of the American Chemical Society, 2011, 133(50), 20116. 20 Hao X, Dai D S, Li S S, Dalton transactions, 2018, 47(2), 348. 21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115(in Chinese) 朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115. 22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348. 23 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300. 24 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76. 25 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117(1), 268. 26 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials, 2013, 261(10), 235. 27 Liu G, Niu P, Yin L C, et al. Journal of the American Chemical Society, 2012, 134(22), 9070. 28 Guo Q, Xie Y, Wang X, et al. Chemical Physics Letters, 2003, 380(1), 84. 29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B: Environmental, 2013, 142(10), 362. 30 Xu L, Gu D, Chang X, et al. The Institution of Engineering and Technology, 2018, 13(4), 541. |
|
|
|