INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Application of N, P/RC@Pb Composites to the Negative Electrode of Lead-Carbon Battery |
XIE Fazhi1,*, ZHANG Meng1, ZHANG Daode1, YANG Shaohua2, SONG Hengshuai1, MA Yujia1, FANG Liang2, SHAO Yonggang2
|
1 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China 2 Anhui Accord Science and Technology Co., Ltd., Huangshan 242700, Anhui, China |
|
|
Abstract To ameliorate the problems of uneven Pb-carbon mixing and anode hydrogen precipitation, N, P-doped carbon materials compounded with Pb(N, P/RC@Pb) were prepared with D418 macroporous chelated phosphate resin as the carbon source. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the negative plates and lead-carbon batteries with N, P/RC@Pb composites added were investigated. The results show that Pb is uniformly distributed on the surface of the resin carbon and is tightly bound to the resin carbon in the form of Pb complexes. Linear voltammetry (LSV) tests showed that the addition of N, P/RC@Pb effectively suppressed the hydrogen precipitation reaction (HER), with the 1% N, P/RC@Pb electrode plate having the smallest hydrogen precipitation current (-0.087 A/cm2) at -0.46 V, closer to the blank group (-0.053 A/cm2). In battery cycling tests, the addition of 1wt% N, P/RC@Pb simulated battery life of 1 834 and the blank battery life of 837. In the capacity test, the N, P/RC@Pb battery has a capacity of 240.9 mAh, while the blank battery is only 157.8 mAh, an improvement of 53%. N, P/RC@Pb composites are simple and low-cost to prepare, improve the problem of uneven mixing of lead and carbon, effectively inhibit the hydrogen precipitation reaction on carbon, and have potential applications in lead-carbon batteries.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:Natural Science Research Project of Colleges and Universities in Anhui Province (KJ2018ZD049). |
|
|
1 Moseley P T, Rand D, Monahov B. Journal of Power Sources, 2012, 219, 75. 2 Hu Y, Yang J, Hu J, et al. Advanced Functional Materials, 2018, 28(9), 1870056. 3 Xiang J, Ding P, Zhang H, et al. Journal of Power Sources, 2013, 241, 150. 4 Zhi S, Cao H, Zhang X, et al. Waste Management, 2017, 64, 190. 5 Hong B, Jiang L, Xue H, et al. Journal of Power Sources, 2014, 270, 332. 6 Moseley P T, Rand D, Peters K. Journal of Power Sources, 2015, 295, 268. 7 Lam L T, Louey R. Journal of Power Sources, 2006, 158(2), 1140. 8 Cooper A, Furakawa J, Lam L, et al. Journal of Power Sources, 2009, 188(2), 642. 9 Thangarasu S, Palanisamy G, Roh S H, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(23), 8868. 10 Gu J, Zhong J, Zhu K D, et al. Journal of Energy Storage, 2020, 33, 102082. 11 Pavlov D, Rogachev T, Nikolov P, et al. Journal of Power Sources, 2009, 191(1), 58. 12 Wang J, Hou H, Hu J, et al. Electrochimica Acta, 2019, 299, 682. 13 Yang H, Qi K, Gong L, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(9), 11408. 14 Yin J, Lin N, Lin Z, et al. Energy, 2019, 193, 116675. 15 Lin Z, Lin N, Lin H, et al. Electrochimica Acta, 2020, 338, 135868. 16 Yang H, Qiu Y, Guo X. Electrochimica Acta, 2017, 235, 409. 17 Zhang S, Hao Z, Xue W, et al. Electrochimica Acta, 2018, 290, 46. 18 Szab Z, Broda B, Marosfoi B, et al. Journal of Power Sources, 2021, 513, 230547. 19 Zhong J, Gu J, Zhu K D, et al. Journal of Energy Storage, 2022, 47, 103535. 20 Tong P, Zhao R, Zhang R, et al. Journal of Power Sources, 2015, 286, 91. 21 Li H B, Zhang K H, Chen Q D, et al. Acta Materiae Compositae Sinica, 2021, 38(4), 1128(in Chinese). 李海斌, 张克华, 陈庆典, 等. 复合材料学报, 2021, 38(4), 1128. 22 Wang H, Shao Y, Mei S, et al. Chemical Reviews, 2020, 120(17), 9363. 23 Lu X, Dou H, Gao B, et al. Electrochimica Acta, 2011(14), 56. 24 Xing L, Yao T, Song J, et al. Carbon, 2017, 129, 236. 25 Seichi K, Tatsuo I, Ikuo A, et al. Adsorption science, Chemical Industry Press, China, 2006 (in Japan). 近藤精一, 石川达雄, 安部郁夫, 等. 吸附科学, 化学工业出版社, 2006. 26 Zhang X, Han L, Li M, et al. Journal of Chromatography A, 2021, 1659, 462655. 27 Hong B, Yu X, Jiang L, et al. RSC Advances, 2014, 4(63), 33574. 28 Zhang W, Lin H, Lu H, et al. Journal of Materials Chemistry A, 2015, 3(8), 4399. 29 Zhang W L, Yin J, Lin Z Q, et al. Journal of Power Sources, 2017, 342, 183. 30 Huang S F. Structure design of new carbon materials and its electrochemical charge storage mechanism. Ph. D. Thesis, Yanshan University, China, 2019(in Chinese). 黄士飞. 新型碳材料的结构设计及其电化学储能机制研究. 博士学位论文, 燕山大学, 2019. 31 Yin J, Lin N, Lin Z, et al. Journal of Electroanalytical Chemistry, 2019, 832(9), 266. 32 Li Z, Chen B, Wang D. Journal of Power Sources, 2013, 231(1), 34. 33 Li Z, Chen B, Wu J, et al. Journal of Power Sources, 2014, 248(15), 1. |
|
|
|